从新闻数据组中提取TF-IDF特征

本文档通过20 Newsgroups数据集介绍如何进行特征提取,涉及内容包括分词、去除标点符号、数字、停用词,以及应用TF-IDF模型训练并分析权重。
摘要由CSDN通过智能技术生成

为了练习特征提取,我将使用一个非常有名的数据集,叫做20 Newsgroups;这个数据集一般用来文本分类。

1.分析数据内容

查看目录结构和数据结构

val sc = new SparkContext("local[2]","TF-IDF")
    val path = "data/20news-bydate-train/*"
    val rdd = sc.wholeTextFiles(path)
    val text = rdd.map{
  case (file,text)=> text}
    println(text.count())

2.应用基本的分词方法

切分每个文档的原始内容为多个单词,组成集合,下面实现简单的空格分词。及时相对于较小的文本集,不同单词的个数(也就是特征向量的维度)也可能非常高。

val newsgroups = rdd.map{
  case (file,text)=> file.split("/").takeRight(2).head}
val countByGroup = newsgroups.map(n => (n,1)).reduceByKey(_+_).collect.sortBy(-_._2).mkString(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值