正态总体的样本均值与样本方差的分布

小知识

  • 总体 X X X,均值方差存在,分别为 μ , σ 2 \mu,\sigma^2 μ,σ2
  • X 1 , . . . , X n X_1,...,X_n X1,...,Xn是来自 X X X的一个样本
  • X ‾ , S 2 \overline{X},S^2 X,S2是样本均值和方差
  • 于是有 E ( X ‾ ) = μ , E ( S 2 ) = σ 2 E(\overline{X})=\mu,E(S^2)=\sigma^2 E(X)=μ,E(S2)=σ2 D ( X ‾ ) = σ 2 n D(\overline{X})=\frac{\sigma^2}n D(X)=nσ2
  • 也就是说,样本均值和样本方差的期望=总体
  • 对于正态分布来说,只要确定①服从正态分布②已知期望和方差 ⇒ \Rightarrow 确定分布
    • X ∼ N ( μ , σ 2 ) ⇒ X ‾ 服 从 正 态 分 布 X\sim N(\mu,\sigma^2)\Rightarrow\overline{X}服从正态分布 XN(μ,σ2)X

定理1

  • X 1 , . . . , X n X_1,...,X_n X1,...,Xn是来自 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)的一个样本
  • X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim N(\mu,\frac{\sigma^2}n) XN(μ,nσ2)

定理2

  • X 1 , . . . , X n X_1,...,X_n X1,...,Xn是来自 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)的一个样本
  • ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) σ2(n1)S2χ2(n1)
  • X ‾ 与 S 2 \overline{X}与S^2 XS2相互独立

定理3

  • X ‾ − μ S / n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1) S/n Xμt(n1)

证明:

  • X ‾ − μ σ / n ∼ N ( 0 , 1 ) \frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1) σ/n XμN(0,1)
  • ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) σ2(n1)S2χ2(n1)

定理4

  • X 1 , . . . , X n 1 ∼ N ( μ 1 , σ 1 2 ) , Y 1 , . . . , Y n 2 ∼ N ( μ 2 , σ 2 2 ) X_1,...,X_{n_1}\sim N(\mu_1,\sigma_1^2),Y_1,...,Y_{n_2}\sim N(\mu_2,\sigma_2^2) X1,...,Xn1N(μ1,σ12),Y1,...,Yn2N(μ2,σ22)
  • ( X 1 , . . . , X n 1 ) 与 ( Y 1 , . . . , Y n 2 ) (X_1,...,X_{n_1})与(Y_1,...,Y_{n_2}) (X1,...,Xn1)(Y1,...,Yn2)相互独立
  • S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) σ12/σ22S12/S22F(n11,n21)
  • σ 1 = σ 2 = σ \sigma_1=\sigma_2=\sigma σ1=σ2=σ时, ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \frac{(\overline{X}-\overline{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{w} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t\left(n_{1}+n_{2}-2\right) Swn11+n21 (XY)(μ1μ2)t(n1+n22) S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 , S w = S w 2 S_{w}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}, \quad S_{w}=\sqrt{S_{w}^{2}} Sw2=n1+n22(n11)S12+(n21)S22,Sw=Sw2
  • 16
    点赞
  • 76
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
假设我们有一个单个正态总体,均值未知,我们想要进行方差的假设检验。可以使用 MATLAB 的 vartest 函数来实现。 具体步骤如下: 1. 假设我们有一个大小为 n 的样本,保存在向量 x 中。 2. 我们需要计算样本方差 s2,可以使用 MATLAB 的 var 函数来计算。 ``` s2 = var(x); ``` 3. 我们需要设置显著性水平 alpha 和假设检验类型 H0 和 H1。 4. 使用 vartest 函数进行假设检验,该函数将返回一个逻辑值,表示是否拒绝原假设。 ``` [h,p,c,stats] = vartest(x,sigma0,'alpha',alpha,'tail',tail); ``` 其中: - x 是样本向量; - sigma0 是假设的总体方差; - alpha 是显著性水平,通常取 0.05; - tail 是假设检验类型,可以是 'both'(双侧检验)或 'right'(右侧检验)。 函数的输出参数解释如下: - h 是一个逻辑值,表示是否拒绝原假设; - p 是假设检验的 p 值; - c 是置信区间; - stats 包含检验的统计信息。 完整的 MATLAB 代码示例: ``` % 假设我们有一个样本向量 x x = [1.2, 2.5, 3.1, 4.2, 5.5]; % 计算样本方差 s2 = var(x); % 假设总体方差为 4 sigma0 = 4; % 设置显著性水平为 0.05,假设检验类型为双侧检验 alpha = 0.05; tail = 'both'; % 进行假设检验 [h,p,c,stats] = vartest(x,sigma0,'alpha',alpha,'tail',tail); % 输出结果 if h == 1 fprintf('拒绝原假设,样本方差不等于 %f\n', sigma0); else fprintf('接受原假设,样本方差等于 %f\n', sigma0); end fprintf('p 值为 %f\n', p); fprintf('置信区间为 [%f, %f]\n', c); fprintf('统计信息:\n'); disp(stats); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值