径向基函数网络:RBFN的原理与应用
1.背景介绍
在机器学习和神经网络领域,径向基函数网络(Radial Basis Function Network,RBFN)是一种强大的人工神经网络模型。它结合了人工神经网络的优点和传统的高斯核函数的优点,在函数逼近、模式分类、数据预测等领域有着广泛的应用。
RBFN最初由Broomhead和Lowe于1988年提出,它是一种前馈神经网络,具有良好的逼近性能、简单结构、快速训练等优点。与反向传播神经网络(Back Propagation Neural Network,BPNN)相比,RBFN避免了"陷入局部极小值"的问题,收敛速度更快,对输入数据的微小变化也不太敏感。
2.核心概念与联系
2.1 径向基函数(Radial Basis Function)
径向基函数是一种以向量范数为自变量的实值函数,其函数值只与向量的范数有关,与向量的方向无关。常用的径向基函数包括高斯函数、多项式函数、逻辑函数等。
2.2 RBFN网络结构
RBFN通常由三层结构组成:输入层、隐含层(也称基函数层)和输出层。
graph TD
A[输入层] --> B[隐含层/基函数层]
B --> C[输出层]
- 输入层: 接收输入数据,并将其传递给隐含