联邦学习模型攻防研究:隐私保护后门攻击与鲁棒性提升

1. 背景介绍

1.1 人工智能与数据隐私

近年来,人工智能 (AI) 技术取得了显著的进步,并在各个领域得到广泛应用。然而,AI 的发展离不开大量的训练数据,而这些数据往往包含用户的敏感信息,例如个人身份信息、医疗记录、金融交易记录等。直接使用这些数据进行模型训练可能会导致严重的隐私泄露风险。

1.2 联邦学习的兴起

为了解决 AI 训练中的数据隐私问题,联邦学习 (Federated Learning) 应运而生。联邦学习是一种分布式机器学习框架,它允许多个参与方在不共享本地数据的情况下协作训练一个共享的全局模型。在联邦学习中,每个参与方都持有自己的本地数据集,并使用这些数据在本地训练模型。然后,参与方将模型更新 (例如梯度) 上传到中央服务器,中央服务器聚合所有参与方的更新并更新全局模型。这个过程迭代进行,直到全局模型收敛。

1.3 联邦学习的优势

联邦学习具有以下优势:

  • 保护数据隐私: 参与方不需要共享本地数据,从而保护了用户隐私。
  • 数据隔离: 每个参与方的数据都保存在本地,不会被其他参与方或中央服务器访问。
  • 数据多样性: 联邦学习可以利用来自多个参与方的多样化数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值