
ChatGPT开发实战代码案例详解
文章平均质量分 91
专栏提供了一系列实用的代码案例,帮助读者深入理解和应用ChatGPT。从基础的文本生成到对话系统的构建,这本专栏覆盖了各种应用场景和技术要点。每个案例都有详细的代码解释和示例,帮助读者逐步掌握ChatGPT的开发技巧。无论是初学者还是有经验的开发者,都能从这本专栏中获得实用的知识和技巧。
AI天才研究院
中国程序员光剑,AI天才研究院和光剑读书创始人兼CEO。
展开
-
基于 LLM 和用户行为轨迹、图文数据、用户指令的可交互式个性化商品推荐
本文从整体架构、领域模型、接口设计到核心代码实现实例,系统性地介绍了基于 LLM 与多模态数据构建个性化商品推荐系统的设计思路与实现方案。通过对用户行为轨迹、图文数据和用户指令的深度融合,系统不仅能够为用户提供精准的推荐,同时支持实时交互,满足不同场景下的个性化需求。利用传统推荐算法与 LLM 模型结合,实现候选集生成和深度排序;设计灵活且安全的 API 接口,确保前后端高效交互;采用微服务架构和容器化部署,实现系统的高并发、高可用和可扩展性;原创 2025-02-18 16:51:49 · 213 阅读 · 0 评论 -
项目实战:自动化交易决策 AI Agent 工作流实现
通过本项目,我们实现了一个基于 LLM 辅助决策的自动化交易系统。该系统将 maas SDK 的智能决策:通过 LLM 分析历史数据,动态生成交易信号;风险控制:内置止损机制,保障交易安全;模块化设计:各个模块独立,便于扩展和维护;实时模拟:通过延时模拟实时交易场景,提供直观反馈。数据接入:接入真实的市场数据和交易接口;模型优化:引入更复杂的量化模型和机器学习算法;风控升级:设计更精细的风险管理策略和动态仓位管理;系统整合:构建可视化监控界面,实现全自动化交易系统的闭环控制。原创 2025-02-17 10:53:42 · 308 阅读 · 0 评论 -
如何使用 ChatGPT 自动化营销:一份高效Prompt指南
现在,是时候让ChatGPT了解你的业务了。保持简洁,避免使用行业术语。描述:我为独立创业者提供实用的营销资源(视频课程、清单、指南、模板等)。价值主张:独立创业者通过我们的产品获得清晰的营销指导,从而更快地实现盈利。目标受众:正在构建微SaaS、产品化服务、内容产品(如课程、时事通讯等)、移动应用的独立创业者。产品价格从69美元到199美元不等。大多数产品是自主学习型的,也有一些提供人工服务(例如,24小时内的登陆页面视频审查)。月收入:5000美元。团队成员:我和我的妻子。原创 2024-09-29 16:43:02 · 979 阅读 · 0 评论 -
程序员实现财富自由的本质原理与方法实践(二)
在当今数字化时代,程序员作为技术领域的核心人才,拥有独特的优势和机会来实现财富自由。然而,仅仅依靠固定工资很难达成这一目标。本文将深入探讨程序员实现财富自由的本质原理,并提供切实可行的方法实践,帮助广大技术从业者打造多元化的收入来源,最终实现财务独立和人生自由。程序员实现财富自由的核心算法可以概括为:技能积累 + 价值创造 + 收入多元化 + 复利效应 = 财富自由。这个算法强调了持续学习、创造价值、分散风险和长期投资的重要性。构建了财富自由的核心算法模型提供了详细的数学模型和案例分析。原创 2024-07-08 00:32:59 · 591 阅读 · 0 评论 -
基础大语言模型的未来发展方向
随着深度学习技术的飞速发展,基础模型(Foundation Models)已经成为人工智能领域的研究热点。基础模型通过在大规模数据集上进行预训练,学习到丰富的知识,能够为各种下游任务提供强大的特征提取和表示能力。从早期的词嵌入到如今的Transformer模型,基础模型在自然语言处理、计算机视觉、语音识别等领域取得了显著的成果。本文将探讨基础模型的未来发展方向,分析其潜在挑战和机遇。基础模型的算法原理主要基于深度学习和迁移学习。原创 2024-07-07 00:15:13 · 462 阅读 · 0 评论 -
全球 AI 大模型月度回顾 · 2024年6月
目录全球 AI 大模型月度回顾 · 2024年6月国外篇Stability AI 推出音频生成模型 Stable Audio OpenMeta 发布最新RAG评价基准Apple 推出全新个性化智能系统 Apple intelligenceOpenAI 宣布与 Apple 合作,接入 Apple 生态Stability AI 推出最先进文生图大模型 SD 3 MediumLuma AI 推出AI视频生成模型 Dream MachineNVIDIA 开源通用大模型 Nemotron 3400亿参数版本Googl原创 2024-07-02 00:31:39 · 1808 阅读 · 0 评论 -
Flash Attention 2 原理与应用
随着深度学习技术的快速发展,特别是在自然语言处理领域,Transformer架构及其衍生模型已经成为主流。这些模型的核心组件之一就是注意力机制(Attention Mechanism)。然而,随着模型规模的不断扩大,传统注意力机制的计算复杂度和内存消耗成为了制约模型进一步发展的瓶颈。计算复杂度高:对于序列长度为N的输入,传统注意力机制的时间复杂度为O(N2),空间复杂度也为O(N2)。内存消耗大:需要存储完整的注意力矩阵,对于长序列输入,这将占用大量GPU内存。原创 2024-07-02 00:30:59 · 294 阅读 · 0 评论 -
大语言模型应用指南:编码与无损压缩
随着人工智能技术的不断发展,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了令人瞩目的成就。这些模型能够通过训练海量的文本数据,学习语言的语义和上下文关系,从而生成看似人类水平的自然语言输出。然而,训练和部署这些庞大的语言模型需要耗费大量的计算资源,并且生成的文本输出通常存在一定的冗余和重复。因此,如何高效地编码和压缩这些大型语言模型及其输出,成为了一个亟待解决的问题。子词分词算法:将原始文本拆分为子词序列,降低词汇表大小,提高编码效率。子词编码算法。原创 2024-06-28 00:41:30 · 265 阅读 · 0 评论 -
ChatGPT 大模型深度学习系统科学的视角——“大模型”深度学习是结构与组合的艺术
近年来,随着计算机硬件性能的飞速发展和海量数据的积累,深度学习技术取得了突破性进展。尤其是以 ChatGPT 为代表的大规模语言模型,展现出了惊人的自然语言理解和生成能力,引发了学术界和工业界的广泛关注。这些大模型的成功离不开深度学习系统科学的支撑。大模型的核心算法可以概括为:基于 Transformer 的自监督预训练 + 针对下游任务的微调。其原理可以用下图表示:fill:#333;color:#333;color:#333;fill:none;大规模无标注语料自监督预训练预训练语言模型。原创 2024-06-28 00:40:49 · 949 阅读 · 0 评论 -
【大模型应用开发 动手做AI Agent】自我演进的AI
随着人工智能技术的快速发展,大模型的出现为AI Agent的研发带来了新的契机。传统的AI系统往往是基于特定领域知识和规则构建的,缺乏自主学习和演进的能力。而大模型的出现,为AI Agent提供了海量的知识和语言理解能力,使其有可能实现自我学习和演进。基于大模型的知识表示和语言理解基于强化学习的策略优化基于知识图谱的知识管理和推理基于语义理解和自然语言处理的智能交互这些算法相互配合,实现AI Agent的自主学习和演进。本文系统介绍了自我演进的AI Agent技术。原创 2024-06-28 00:39:36 · 304 阅读 · 0 评论 -
大语言模型应用指南:外部工具
信息需求识别: 首先,算法需要识别出语言模型输入中哪些部分需要外部信息或功能的支持。这可以通过关键词匹配、语义分析或其他技术来实现。外部工具选择: 根据识别出的信息需求,算法需要选择合适的外部工具来获取所需的知识或服务。这可能涉及到对不同工具的功能和覆盖范围进行匹配和评估。外部工具交互: 算法需要与选定的外部工具进行交互,提交查询或请求,并获取相应的输出结果。这可能需要处理不同工具的API或接口。知识融合: 将外部工具的输出结果与语言模型的原始输入进行融合,生成增强后的最终输出。原创 2024-06-28 00:39:46 · 254 阅读 · 0 评论 -
【一切皆是映射】强化学习在金融市场预测中的应用:挑战与机遇
金融市场预测一直是金融领域最具挑战性的课题之一。传统的金融市场预测方法主要基于统计学模型和机器学习算法,如时间序列分析、回归分析、支持向量机等。然而,这些方法在面对金融市场的动态性、非线性和不确定性时,往往难以取得令人满意的预测效果。近年来,随着人工智能技术的飞速发展,强化学习开始被应用于金融市场预测领域,为解决这一难题提供了新的思路和方法。强化学习有多种经典算法,包括值函数类算法(如Q-Learning)、策略梯度类算法(如REINFORCE)、演员-评论家算法(如DDPG)等。原创 2024-06-25 00:27:04 · 331 阅读 · 1 评论 -
大语言模型原理与应用实践:基于监督学习进行微调 Supervised Learning & Fine-Tuning
近年来,随着深度学习技术的快速发展,大规模语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了巨大的突破。这些大语言模型通过在海量无标签文本数据上进行预训练,学习到了丰富的语言知识和常识,可以通过少量的有标签样本在下游任务上进行微调(Fine-Tuning),获得优异的性能。其中最具代表性的大模型包括OpenAI的GPT系列模型、Google的BERT、T5等。原创 2024-06-25 00:27:22 · 1457 阅读 · 0 评论 -
深度学习在自然语言处理中的应用与实践【Claude 3.5 sonnet 测评】
自然语言处理(Natural Language Processing,NLP)是人工智能和计算机科学领域中的一个重要分支,旨在实现人机之间自然语言的交互和理解。随着互联网和社交媒体的迅速发展,文本数据呈现爆炸式增长,传统的基于规则和统计的NLP方法已经难以应对如此庞大和复杂的语言数据。深度学习技术的兴起为NLP带来了新的机遇和挑战,为解决复杂的语言理解和生成任务提供了强大的工具。词嵌入算法循环神经网络(RNN)及其变体注意力机制和Transformer预训练语言模型。原创 2024-06-23 00:06:24 · 411 阅读 · 0 评论 -
从零开始大模型开发与微调:自定义神经网络框架的具体实现
虽然现有的深度学习框架(如PyTorch、TensorFlow等)提供了丰富的模型构建模块,但在大模型开发过程中,我们往往需要对这些框架进行定制化扩展,以满足特殊的需求。因此,构建自定义的神经网络框架就显得尤为重要,它不仅能够提高模型的灵活性和可扩展性,还能加深我们对深度学习原理的理解。在本文中,我们将从头开始构建一个模块化的神经网络框架,涵盖数据处理、模型定义、训练循环、评估指标等各个方面,为大模型开发奠定坚实的基础。原创 2024-06-04 00:09:31 · 88 阅读 · 0 评论 -
优化算法:Adagrad 原理与代码实例讲解
在机器学习和深度学习中,优化算法扮演着至关重要的角色。它们是模型训练的核心,决定了模型的收敛速度和性能。优化算法的目标是最小化损失函数,找到最优的模型参数。Adagrad (Adaptive Gradient) 是一种自适应学习率优化算法,由 Duchi 等人于 2011 年提出。它的核心思想是为每个参数维护一个学习率,并根据历史梯度信息动态调整。自适应学习率算法的进一步改进:研究者正在探索新的自适应学习率算法,如 AdamW 和 RAdam,以进一步提高优化性能。原创 2024-06-04 00:07:33 · 302 阅读 · 0 评论 -
大语言模型原理与代码实例讲解
这里我们定义了一个简单的Transformer编码器模型,主要组件包括:输入嵌入层,位置编码层,多层Transformer编码器层,以及输出线性层。forward方法定义了前向传播过程。位置编码模块使用正弦和余弦函数生成位置编码向量,并将其加到输入嵌入上,以便模型能够利用序列中的位置信息。原创 2024-06-04 00:07:15 · 119 阅读 · 0 评论 -
【大模型应用开发 动手做AI Agent】Plan-and-Solve策略的提出
Plan-and-Solve策略源于经典的"分而治之"思想,旨在将复杂任务分解为多个可管理的子任务,然后对每个子任务进行规划和解决,最终将子任务的输出组合起来得到最终结果。: 理解输入的任务需求,明确任务目标。: 将复杂任务分解为多个子任务,并确定子任务的执行顺序。: 针对每个子任务,生成解决方案并执行,直至完成整个任务。这种策略的关键在于,通过任务规划(Task Planning)将复杂问题分解,使大模型能够集中处理每个子任务,降低了认知负荷;原创 2024-06-02 12:17:12 · 278 阅读 · 0 评论 -
【大模型应用开发 动手做AI Agent】Agent的规划和决策能力
随着计算能力的不断提升和算法的持续创新,人工智能(AI)已经从概念走向现实,并在越来越多的领域发挥着重要作用。其中,大模型(Large Model)作为AI发展的重要里程碑,正在引领着人工智能的新浪潮。多智能体系统:多个智能Agent之间的协作和竞争是未来的重要研究方向。多智能体系统可以应用于交通管理、机器人团队、分布式控制等场景。自适应学习:智能Agent需要具备更强的自适应能力,能够在动态和不确定的环境中快速调整策略和行为。跨领域应用。原创 2024-05-31 13:31:42 · 1223 阅读 · 0 评论 -
【AIGC从入门到进阶实战】AI生成思维导图,一分钟完成原先需要一个月才能完成的任务
思维导图是一种将信息以有层次、有联系的树状结构进行整理和表达的有效工具。它能够帮助我们更好地组织和理解复杂的概念,提高学习效率和创造力。在各个领域中,思维导图被广泛应用于知识管理、项目规划、会议记录等场景。模型精度:如何提高主题建模和关系抽取的精度,是当前研究的重点。自动化程度:如何实现从文本到思维导图的全自动化生成,是未来的一个重要方向。用户体验:如何优化思维导图的布局和展示效果,提高用户体验,是一个值得关注的问题。跨领域应用。原创 2024-05-30 00:08:36 · 384 阅读 · 0 评论 -
强化学习:学习率与折扣因子选择
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它通过智能体(Agent)与环境(Environment)的交互来学习最优策略,以获得最大的累积奖励。与监督学习和非监督学习不同,强化学习不需要预先准备好标注数据,而是通过探索(Exploration)和利用(Exploitation)来不断优化策略。自适应参数调整:未来的强化学习算法将更加智能,能够根据环境动态调整学习率和折扣因子,提高学习效率和稳定性。多任务学习。原创 2024-05-30 00:08:22 · 389 阅读 · 0 评论 -
视觉Transformer原理与代码实例讲解
近年来,Transformer在自然语言处理(NLP)领域取得了巨大的成功,如BERT和GPT模型。受其启发,研究人员开始将Transformer应用到计算机视觉(CV)领域,提出了视觉Transformer(Vision Transformer, ViT)。视觉Transformer通过将图像划分为一系列的图像块(patch),并将其视为序列数据进行处理,展现了在图像分类任务中强大的性能。return xreturn xnn.GELU(),return x])return x更高效的模型。原创 2024-05-30 00:08:07 · 170 阅读 · 0 评论 -
深度解读 ChatGPT 原理与应用实战案例详解
ChatGPT 是由 OpenAI 开发的一个基于 GPT 架构的对话生成模型。GPT(Generative Pre-trained Transformer)是一种基于变压器(Transformer)架构的生成式语言模型,通过大规模预训练和微调,可以生成高质量的自然语言文本。ChatGPT 通过对大量对话数据进行训练,能够在不同的上下文中生成连贯且自然的对话内容。更大规模的预训练模型:未来的语言模型将会在更大规模的数据上进行预训练,进一步提升模型的性能和泛化能力。多模态学习。原创 2024-05-29 00:29:56 · 935 阅读 · 0 评论 -
联邦学习在电商隐私数据建模中的实践
联邦学习在电商隐私数据建模中的实践作者:禅与计算机程序设计艺术1. 背景介绍随着电子商务的快速发展,海量的用户行为数据已经成为电商企业最宝贵的资产。这些数据包含了用户的购买习惯、浏览记录、偏好等隐私信息,对于精准营销、个性化推荐等关键业务至关重要。然而,如何在保护用户原创 2024-03-29 15:00:44 · 684 阅读 · 0 评论 -
知识蒸馏在模型压缩中的运用
知识蒸馏在模型压缩中的运用作者:禅与计算机程序设计艺术1. 背景介绍随着深度学习在各个领域的广泛应用,模型规模也越来越大,参数量越来越庞大。大模型不仅需要大量的计算资源和存储空间,在部署和推理时也面临着效率低下的问题。因此,如何有效压缩模型,在保证性能的前提下减小模型体积,成为了当前人工智能领域的一大挑战。原创 2024-03-30 03:19:44 · 216 阅读 · 0 评论 -
强化学习在智能控制中的前沿进展
强化学习在智能控制中的前沿进展作者:禅与计算机程序设计艺术1. 背景介绍随着人工智能技术的不断发展,强化学习在智能控制领域中越来越受到关注和应用。强化学习是一种通过与环境的交互来学习最优策略的机器学习方法,它能够在复杂的动态环境中自主学习并做出决策。与传统的基于模型的控制原创 2024-03-29 15:36:14 · 467 阅读 · 0 评论 -
基于大模型的电商智能导购系统可视化设计
基于大模型的电商智能导购系统可视化设计作者:禅与计算机程序设计艺术1. 背景介绍电子商务行业近年来发展迅猛,为消费者提供了海量的商品选择。然而,对于普通消费者而言,在如此庞大的商品库中寻找到真正满足自己需求的商品变得越来越困难。传统的关键词搜索已经无法满足消费者个原创 2024-03-30 02:43:42 · 622 阅读 · 0 评论 -
珠宝类目商品的个性化推荐系统设计
珠宝类目商品的个性化推荐系统设计作者:禅与计算机程序设计艺术1. 背景介绍在电子商务行业中,个性化推荐系统已经成为提升用户体验和商业转化率的关键技术之一。对于珠宝类目商品而言,由于其价格昂贵、款式多样、个人喜好差异大等特点,如何为用户提供个性化的商品推荐,是电商平台亟需原创 2024-03-30 03:20:15 · 376 阅读 · 0 评论 -
图书类目的智能化运营实践
图书类目的智能化运营实践作者:禅与计算机程序设计艺术1. 背景介绍在当今的电子商务时代,图书销售已经成为一个重要的商业领域。图书类目的合理组织和智能运营对于提高用户体验、提升销售效率和收益都至关重要。随着大数据、人工智能等技术的不断发展,如何利用这些技术手段来实现图书类目的智能原创 2024-03-29 15:12:45 · 684 阅读 · 0 评论 -
基于强化学习的个性化商品推荐算法
基于强化学习的个性化商品推荐算法1. 背景介绍在当今瞬息万变的电子商务环境中,如何为用户提供个性化、精准的商品推荐服务,一直是业界关注的热点问题。传统的基于协同过滤、内容过滤等方法的推荐系统存在一些局限性,无法充分利用用户行为的动态特点,难以捕捉用户偏好的细微变化。近年原创 2024-03-29 15:19:01 · 526 阅读 · 0 评论 -
数据仓库在电商系统中的应用
数据仓库在电商系统中的应用作者:禅与计算机程序设计艺术1. 背景介绍电子商务行业近年来飞速发展,并成为全球经济中不可或缺的一部分。电商系统需要处理大量的交易数据、客户数据、产品数据等,如何有效地管理和利用这些海量数据,成为电商企业面临的重要课题。数据仓库技术为电商系统提供了一原创 2024-03-29 15:30:30 · 725 阅读 · 0 评论 -
蒸馏学习在小样本商品分类中的应用
蒸馏学习在小样本商品分类中的应用1. 背景介绍在电商行业中,商品分类是一个非常重要的环节。准确的商品分类不仅可以帮助用户更好地浏览和搜索商品,也可以为商家提供精准的营销建议。然而,由于商品种类繁多,且新品不断涌现,使用传统的监督学习方法进行商品分类往往会面临样本不足的问题。原创 2024-03-29 15:07:00 · 242 阅读 · 0 评论 -
基于强化学习的珠宝类目商品个性化推荐策略
基于强化学习的珠宝类目商品个性化推荐策略作者:禅与计算机程序设计艺术1. 背景介绍在电子商务行业中,如何为用户提供个性化的商品推荐一直是一个备受关注的重要问题。特别是在珠宝首饰这样高价值商品的推荐中,准确把握用户需求并给出合适的推荐显得尤为关键。传统的基于协同过原创 2024-03-30 02:45:16 · 461 阅读 · 0 评论 -
珠宝商品AI导购系统中的元学习与零样本迁移
珠宝商品AI导购系统中的元学习与零样本迁移作者:禅与计算机程序设计艺术1. 背景介绍随着电子商务的快速发展,在线珠宝销售已成为一个巨大的市场。然而,由于珠宝商品的多样性和复杂性,为客户提供个性化的购买建议一直是一个巨大的挑战。传统的基于规则的推荐系统难以全面考原创 2024-03-30 03:20:46 · 391 阅读 · 0 评论 -
强化学习在电商智能决策中的实践
强化学习在电商智能决策中的实践作者:禅与计算机程序设计艺术1. 背景介绍电子商务行业近年来飞速发展,数据驱动的智能决策已成为行业发展的关键所在。其中,强化学习作为一种高效的机器学习算法,在电商智能决策中展现出巨大的潜力。本文将深入探讨强化学习在电商场景中的实践应用,包括核原创 2024-03-29 15:25:17 · 319 阅读 · 0 评论 -
基于深度强化学习的服装搭配优化
基于深度强化学习的服装搭配优化作者:禅与计算机程序设计艺术1. 背景介绍服装搭配一直是时尚界和消费者关注的热点话题。随着人工智能技术的不断发展,如何利用计算机算法来提升服装搭配的效率和优化用户体验,成为了业界和学术界共同关注的研究方向。近年来,基于深度学习的服装搭配优化方原创 2024-03-30 02:45:47 · 581 阅读 · 0 评论 -
自动机器学习在工业优化中的实践
自动机器学习在工业优化中的实践作者:禅与计算机程序设计艺术1. 背景介绍随着工业自动化和智能制造的快速发展,工业过程优化已经成为提高生产效率、降低成本、提升产品质量的关键。传统的工业优化方法主要依赖于专家经验和手工调参,存在高成本、低效率等问题。而随着机器学习技术的不断进原创 2024-03-30 03:21:18 · 330 阅读 · 0 评论 -
服装商品导购系统中的元学习与迁移学习应用
服装商品导购系统中的元学习与迁移学习应用作者:禅与计算机程序设计艺术1. 背景介绍服装商品导购系统是电商行业中非常重要的一个环节,它能够帮助消费者快速找到心仪的商品,提高购买转化率。随着人工智能技术的不断发展,基于深度学习的个性化推荐系统已经广泛应用于服装导购领原创 2024-03-30 02:41:36 · 376 阅读 · 0 评论 -
食品类目知识图谱在营销决策中的应用
食品类目知识图谱在营销决策中的应用作者:禅与计算机程序设计艺术1. 背景介绍随着大数据时代的到来,企业所拥有的数据呈指数级增长。其中,食品行业作为日常生活中不可或缺的重要行业之一,积累了大量的消费者行为数据、产品信息数据以及营销活动数据等。如何有效挖掘这些数据中蕴含的原创 2024-03-29 15:06:29 · 254 阅读 · 0 评论 -
知识图谱在家居导购中的应用实践
知识图谱在家居导购中的应用实践作者:禅与计算机程序设计艺术1. 背景介绍随着互联网技术的迅速发展,人们的消费习惯也发生了很大的变化。尤其是在家居行业,消费者对于家居产品的选择变得更加理性和个性化。传统的家居导购模式已经越来越难以满足消费者的需求。而知识图谱技术的应用为家居导购领域带来了全新的机遇。知识原创 2024-03-30 03:17:38 · 281 阅读 · 0 评论