马尔可夫链与“熵”的结合(初稿)

本文探讨了如何使用熵来衡量随机过程的不确定度,特别是对于马尔可夫链。介绍了熵率的概念,展示了在平稳随机过程中的熵率与条件熵的联系,并证明了在平稳马尔可夫链中熵率的计算公式。同时,讨论了非马尔可夫链情况下的熵率求解策略,包括通过夹逼不等式确定熵率的范围。
摘要由CSDN通过智能技术生成
针对随机变量 XX ,其熵 H(X)=-\sum_x p(x)\log_2 p(x)H(X)=-\sum_x p(x)\log_2 p(x) 可以衡量 XX 的不确定度。
复杂一点,联合分布 (X,Y)(X,Y) ,熵为 H(X,Y)=-\sum_x\sum_yp(x,y)\log_2p(x,y)H(X,Y)=-\sum_x\sum_yp(x,y)\log_2p(x,y)
而当这里的随机变量 XX 变成一个随机过程 \{X_i\}\{X_i\} 时,就有必要重新思考如何度量不确定度了。单个的定义 H(X_i)H(X_i) 不是很好,于是我们干脆定义一个比较平均一点的熵-熵率。
Definition 1:熵率(entropy rate): 若极限 H(\chi)=\lim_{n \rightarrow \infty}\frac{​{H(X_1,X_2,...,X_n)}}{n}H(\chi)=\lim_{n \rightarrow \infty}\frac{ {H(X_1,X_2,...,X_n)}}{n} 存在,则 H(\chi)H(\chi) 称为 {X_i}{X_i} 的熵率
另一个量也与熵率有不可描述的联系:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值