针对随机变量
X ,其熵
H(X)=-\sum_x p(x)\log_2 p(x) 可以衡量
X 的不确定度。
复杂一点,联合分布
(X,Y) ,熵为
H(X,Y)=-\sum_x\sum_yp(x,y)\log_2p(x,y) 。
而当这里的随机变量
X 变成一个随机过程
\{X_i\} 时,就有必要重新思考如何度量不确定度了。单个的定义
H(X_i) 不是很好,于是我们干脆定义一个比较平均一点的熵-熵率。
Definition 1:熵率(entropy rate): 若极限 H(\chi)=\lim_{n \rightarrow \infty}\frac{ {H(X_1,X_2,...,X_n)}}{n} 存在,则 H(\chi) 称为 {X_i} 的熵率
另一个量也与熵率有不可描述的联系: