评估非中心 t 分布的累积密度函数和概率密度函数

159 篇文章 ¥29.90 ¥99.00
本文介绍了非中心t分布的累积密度函数(CDF)和概率密度函数(PDF),讨论其在统计中的应用,并提供了C++代码实现。非中心参数和自由度是关键参数,CDF可通过伽马函数和余补误差函数计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评估非中心 t 分布的累积密度函数和概率密度函数

非中心 t 分布是统计学中一种常用的概率分布,用于处理小样本量下的假设检验和置信区间估计。它是 t 分布的一种变体,考虑了数据的非中心性,即样本均值与总体均值之间的差异。在本文中,我们将介绍如何评估非中心 t 分布的累积密度函数(Cumulative Density Function, CDF)和概率密度函数(Probability Density Function, PDF),并提供相应的 C++ 代码实现。

首先,让我们了解一下非中心 t 分布的定义和特性。非中心 t 分布由两个参数确定:自由度(degrees of freedom, df)和非中心参数(non-centrality parameter, nc)。自由度决定了分布的形状,而非中心参数则表示了非中心性的程度。非中心 t 分布的概率密度函数表示为:

double noncentralT_pdf(double x, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值