评估非中心 t 分布的累积密度函数和概率密度函数
非中心 t 分布是统计学中一种常用的概率分布,用于处理小样本量下的假设检验和置信区间估计。它是 t 分布的一种变体,考虑了数据的非中心性,即样本均值与总体均值之间的差异。在本文中,我们将介绍如何评估非中心 t 分布的累积密度函数(Cumulative Density Function, CDF)和概率密度函数(Probability Density Function, PDF),并提供相应的 C++ 代码实现。
首先,让我们了解一下非中心 t 分布的定义和特性。非中心 t 分布由两个参数确定:自由度(degrees of freedom, df)和非中心参数(non-centrality parameter, nc)。自由度决定了分布的形状,而非中心参数则表示了非中心性的程度。非中心 t 分布的概率密度函数表示为:
double noncentralT_pdf(double x,