DAG模型—嵌套矩形问题

嵌套矩形问题:有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽。嵌套矩形X(a,b)可以嵌套在矩形Y(c,d)中,当且仅当a<c,b<d或a<d,b<c(相当于旋转90度)。

                           你的任务是选择尽量多的矩形排成一排,使得除了最后一个矩形外,每个矩形都嵌套在下一个矩形中。如果有多解,矩形标号的字典序应尽量小。

分析:矩形之间可嵌套关系可以用图来建模。如果x可以嵌套在y中,这x到y有一条边。这个有向图是无环的,这样要求的就是DAG上的最长路问题。

         d(i)表示从结点i出发的最长路,因此:

                                                                            d(i)=max(d(j)+1|(i,j)属于E)

     最终答案为d(i)中的最大值。



代码如下:

有邻接矩阵保存图G;

memset(d,-1,sizeof(d))

int dp(int i){

   if(d[i]>0) return d[i];

d[i]=1;

for(int j=1;j<=n;j++)

     if(G[i][j]) d[i]=max(d[i],dp(j)+1);//求最大值

return d[i];

}


打印字典序最小方案:

void print_ans(int i){

       printf("%d",i);

      for(int j=1;j<=n;j++) {

           if(G[i][j]&&d[i]==d[j]+1)

            print_ans(j);

            break;                               //一个一个的输出

      }

}


思考:如果要打印所有的结果,只把break删掉是不够的,正确的做法是记录路径上的所有点,当递归结束的时候一次性全部输出。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/up_XCY/article/details/52369829
个人分类: ACM
上一篇数字三角形问题
下一篇硬币问题
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭