DAG上的动态规划 嵌套矩形模型

点击打开链接

矩形嵌套

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5

分析:矩形之间的“可嵌套”关系是一个典型的二元关系,二元关系可以用图来建模。如果矩形X可以嵌套在矩形Y里,就从X到Y连一条有向边。这个有向图是无环的,因为一个矩形无法直接或间接嵌套在自己内部。换句话说,他是一个DAG。这样所要求的就是DAG上的最长路径。

如何求DAG中不固定起点的最长路径?仿照数字三角形的做法,设d(i)表示从节点i出发的最长路长度,第一步只能走到他的相邻点,因此:d(i)=max{d(j)+1|(i,j)∈E}  为状态转移方程。最终答案是 所有d(i)中的最大值。

int dp(int i)
{
    int &ans=d[i]; //为正在处理的表项d[i]证明一个引用ans,这样任何对ans的读写实际上都是在对d[i]进行
    if(ans>0) return ans;
    ans=1;
    for(int j=0;j<n;j++)
        if(G[i][j]) ans=max(ans,dp[j]+1);
    return ans;
}

如果再加一个要求:如果存在多个最优解,矩形的编号字典序应最小。将所有d值计算出后,选择最大d[i]所对应的i.如果有多个i,选择最小的i,这样才能保证字典序最小。接下来可以选择d(i)=d(j)+1且(i,j)∈E的任何一个j。为了让方案的字典序最小,应选择其中最小的j,程序如下:

void print_ans(int i)
{
    printf("%d ",i);
    for(int j=0;j<n;j++)
        if(G[i][j]&&d[i]==d[j]+1)
    {
        print_ans(j);
        break;
    }
}

注意,当找到一个满足d[i]==d[j]+1的结点j后就应立刻递归打印从j开始的路径,并在递归返回后退出循环。如果要打印所有方案,只把break语句删除是不够的。正确的方法是记录路径上的所有点,在递归结束时才一次性输出整条路径。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=1010;
int G[maxn][maxn];
int d[maxn];
int n;
int ans;
typedef struct
{
    int length;
    int width;
}rectangle;
rectangle rec[maxn];
int dp(int i)
{
    int &ans=d[i];
    if(ans>0) return ans;
    ans=1;
    for(int j=0;j<n;j++)
        if(G[i][j]) ans=max(ans,dp(j)+1);
    return ans;
}
void print_ans(int i)
{
    printf("%d ",i);
    for(int j=0;j<n;j++)
        if(G[i][j]&&d[i]==d[j]+1)
    {
        print_ans(j);
        break;
    }
}
void creatGraph()
{
    memset(G,0,sizeof(G));
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            if(rec[i].length>rec[j].length&&rec[i].width>rec[j].width)
            {
                G[i][j]=1;
            }
        }
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            rec[i].length=max(a,b);
            rec[i].width=min(a,b);
        }
        creatGraph();
        memset(d,0,sizeof(d));
        ans=-1;
        for(int i=0;i<n;i++)
            ans=max(ans,dp(i));
        printf("%d\n",ans);
     //   for(int i=0;i<n;i++)
       //     {print_ans(i);putchar('\n');}
    }
}

另一种解法:对宽进行排序,再对长进行最长上升子序列

#include "stdio.h"  
#include "string.h"  
#define N 1000+10  
int a[N][2];  
int b[N];  
   
int main()  
{  
    int n,m,result;  
    int i,j,temp,temp1,max;  
    scanf("%d",&n);  
    while(n--)  
    {  
        scanf("%d",&m);  
        for(i=1;i<=m;i++)        //读入测试数据   
        {  
            scanf("%d%d",&temp,&temp1);   
            a[i][0]=temp<temp1?temp:temp1;  //矩形的宽   
            a[i][1]=temp<temp1?temp1:temp;   //矩形的长   
        }   
          
        for(i=1;i<=m;i++)     //对矩形的宽进行由小到大排序   
            for(j=i+1;j<=m;j++) if(a[i][0]>a[j][0])  
            {temp=a[i][0];a[i][0]=a[j][0];a[j][0]=temp;  temp1=a[i][1];a[i][1]=a[j][1];a[j][1]=temp1;}  
          
        //求长进行最长升序列求解     
        memset(b,0,sizeof(b)); result=0;  
        for(i=m;i>0;i--)  
        {  
            max=0;  
            for(j=i+1;j<=m;j++)  
                if(a[j][1]>a[i][1] && a[j][0]>a[i][0]) max=max>b[j]?max:b[j];  
            b[i]=max+1;  
                  
            result=result>b[i]?result:b[i];  
        }   
          
        printf("%d\n",result);            
    }  
      
      
    return 0;  
} 

阅读更多
文章标签: dp DAG
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

DAG上的动态规划 嵌套矩形模型

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭