Python实现暗通道去雾算法——清晰还原雾天景色

1151 篇文章 ¥299.90 ¥399.90
本文介绍了Python实现暗通道去雾算法的步骤,通过计算暗通道图、估计全局大气光和应用逆向滤波器,清晰还原雾天照片。虽然存在局限性,如对噪声图像处理效果不佳,但该算法提供了一个理解图像去雾和提升代码能力的有效途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现暗通道去雾算法——清晰还原雾天景色

在雾天拍摄照片时,画面会变得模糊不清,影响了图片的观感和质量。为了解决这个问题,学术界提出了一种称为“暗通道先验”的方法,这种方法基于如下假设:在一个自然场景中,像素值中至少有一个是非常小的。据此,可以通过计算每个像素点周围像素的最小值来得到暗通道图,再根据大气光估计出全局大气光,并通过逆向滤波器去除雾霾。

本文主要介绍Python实现暗通道去雾算法的步骤和代码实现。首先需要安装必要的库:numpy、opencv-python和matplotlib。接着,读取待处理的图片并进行预处理,将其转换为灰度图像。

import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值