PowerBI 开发 第22篇:发现异常(Find Anomalies)

本文介绍了PowerBI的异常检测功能,用于时间序列数据的异常检测和分析。内容涵盖异常检测的启用方法,如何自定义异常的格式,调整算法敏感度,以及异常的解释和根本原因分析。此外,还探讨了通过'Explain by'字段控制分析异常的维度,以增强异常检测的针对性。
摘要由CSDN通过智能技术生成

异常检测通过自动检测时间序列数据中的异常来增强折线图,并且提供了异常解释,以帮助用户进行根本原因的分析。异常检测只能用于Line Chart中,并且必须有Date字段作为X坐标轴,也就是说,只能按照时间序列来检测异常数据。

启用异常检测,只需要在Analyse面板中选择“Find anomalies”。

一,格式化异常

开发人员可以格式化表示异常的icon的形状、大小和颜色,以及预期范围的颜色、样式和透明度,这种自定义的设置可以通过Anomaly的Color,Size和Marker来实现。在报表中,异常以这种可见的icon显示出来。

开发人员还可以配置算法的参数,敏感度是算法数据的敏感程度,默认的敏感度(Sensitivity)是70%,如果增加敏感度,算法对数据的变化更加敏感,在这种情况下,即使是轻微的偏差也会被标记为异常。 如果您降低灵敏度,则该算法对它认为异常的内容更具容忍度。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悦光阴

你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值