tensorflow——MNIST for beginner

MNIST for beginner

实质:单层softmax进行10分类

单张图片大小为28x28,拉成784维的列向量。对应的标签为10维的列向量,表示该张图片所属的类别(如果图片表示数字9,属于第十类,则第十维为1,其他九维都为0)。然后我们对输入图片的每个像素点都进行线性加权并加上偏置。所有参数及对应的维度如下所示:

  • 输入: x (784, 1)
  • 权重:W(10, 784)
  • 偏置: b (10, 1)
  • 标签:y(10, 1)

具体实现细节

对于单张图片,表示数字i的证据为

evidencei=jWi,jxj+bi

将所有证据转化成概率

y=softmax(Wx+b)

其中softmax定义为 softmax(x)=exp(xi)jexp(xj)

误差表示——交叉熵

cross_entropy=iyilogyi

batch loss(多样本)

loss=mean(jcross_entropyj)

最后采用随机梯度下降法训练,代码如下:

import tensorflow as tf

# import data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])

# loss function & training method
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices = [1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

# test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# train
sess = tf.Session()  # launch the session
sess.run(tf.initialize_all_variables())  # initialize
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys})
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

训练环境

name: TITAN X (Pascal)
major: 6 minor: 1 memoryClockRate (GHz) 1.531
pciBusID 0000:02:00.0
Totamory: 11.90GiB
Free memory: 11.75GiB

结果(测试准确率)

0.9165
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值