Day5:剑指 Offer 04. 二维数组中的查找

这篇博客介绍了如何在保持行和列递增的二维数组中高效地查找目标整数。提供了两种方法,一种是K神的二分法实现,另一种是博主自己的解决方案,都是通过二分查找来优化搜索过程。这两种方法都能够减少搜索时间,提高查找效率。
摘要由CSDN通过智能技术生成

题目

在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

二分法

K神做法:

package Day20;

/**
 * 剑指 Offer 04. 二维数组中的查找
 * @Author laimouren
 * @Date 2021/12/11 20:09
 */
public class Solution4 {
     public boolean findNumberIn2DArray(int[][] matrix, int target) {
        int i = matrix.length - 1, j = 0;
        while(i >= 0 && j < matrix[0].length)
        {
            if(matrix[i][j] > target){
                i--;
            }
            else if(matrix[i][j] < target){
                j++;
            }
            else{
                return true;
            }
        }
        return false;
    }
}

自己做法:

class Solution {
    public boolean findNumberIn2DArray(int[][] matrix, int target) {
        int index;
        for (int i = 0; i < matrix.length; i++) {
            if (matrix[i].length == 0 || matrix[i][0] > target){
                return false;
            }
            else {
                index = binarySearch(matrix[i], target);
            }
            if(index >= 0 && index <matrix[i].length
             && matrix[i][index] == target){
                return true;
            }
        }
        return false;
    }
    public int binarySearch(int[] nums,int target){
        int l = 0,r = nums.length-1;
        int m;
        while (l <= r){
            m = l + (r-l)/2;
            if (nums[m] == target){
                return m;
            }else if(nums[m] > target){
                r = m-1;
            }else {
                l = m+1;
            }
        }
        return l;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值