作者:盖景波
突出
提出一种基于麻雀搜索算法(SSA)的DBN参数优化方法
SSA可以通过主观经验减少选择DBN参数引起的随机性和不稳定性。
提出一种采用参数优化DBN的齿轮故障严重性检测方案
参数优化的DBN 模型能够有效地自适应地从相似度高的故障信号中提出深层特征。
与其他诊断方法相比,这种新型故障严重性检测方法具有更高的检测精度和更高的稳定性。
抽象
在齿轮故障诊断中,目前大多数只能故障诊断方法在故障识别方面表现出良好的分类性能。然而,然而,在检测故障严重程度时,由于监测信号之间的相似性高,诊断难度增加,需要提高诊断方法的灵敏度、稳定性和准确性。针对这一问题,提出一种基于麻雀搜索算法(SSA)的参数优化深度信念网络(DBN),用于齿轮故障严重性检测。
首先,初始DBN由不同严重程度的标记齿轮故障信号进行训练。
其次,引入SSA来优化初始DBN的学习速率和批量大小,从而避免主观经验选择网络参数所造成的干扰。
最后,构建了基于改进DBN,最优参数组合的齿轮故障严重程度检测方法。
最后得到的结论是所提方法具有较好的齿轮故障严重性能检测特征提取能力,稳定性和精度。
1 引言
DBN更适合信号差小,特征相似度高的齿轮故障严重性检测,但是,在DBN的建设中,需要专家手动调整网络参数,如学习速率和批量大小等,研究表明,提高学习速率有助于提高模型的泛化能力,但容易导致非收敛性,而增加批大小有助于提高收敛稳定性,但弱化泛化能力。参数设置不当会导致DBN模型稳定性不足和随机性大。
针对上述问题,提出一种基于参数优化DBN的麻雀搜索算法(SSA)齿轮故障严重程度智能检测方法。
首先,对不同故障严重成都下的齿轮信号进行预处理,作为DBN 的输入。
其次,引入SSA以优化DBN 参数,目的是减少主观因素引起的随机性和不稳定性。
最后,开发出基于DBN的智能方法,结合最优参数,识别不同的故障,检测具体故障的严重程度。
该方法的主要贡献:
具有自适应提取(?)和区分抽象深度特征,无显著差异的优势,可避免依赖经验知识和复杂的信号处理,特别适合在早期故障相关特征不明显或者不同故障度下的信号相似度较高时进行故障严重程度检测。
所提方法将SSA用于DBN 参数优化,这在DBN 构建中往往是一项艰巨的任务,对模型性能具有重要的影响,利用SSA优越的勘察能力,搜索精度和搜索效率,避免了随机选择超参数造成的认为干扰和不确定性,通过这种方式,使用SSA的参数优化DBN在故障严重性检测的准确性,稳定性和下旅行方面显示出了优于其他方法的性能。
本文的组织结构如下,第2接介绍了DBN 和SSA的原理,并在此基础上介绍了提出的参数优化方法。
第3接,提出了基于参数优化DBN的故障严重性检测方法,并描述了相应的检测方案。
第4节,进行模拟实验,并将结果与其他方法比较,最后结论在第5节当中提出。
具体内容放个PPT吧,做了相关的汇报。感觉良好~