283个地级及以上城市地理距离、经济距离和引力模型空间权重矩阵

 

283个地级及以上城市地理距离、经济距离和引力模型空间权重矩阵

长期以来,引力模型一直是经济学中最成功的实证模型之一。将更深层次的引力理论基础融入到最近的实践中,可以对引力所描述的空间关系作出更丰富、更准确的估计和解释,这使得它被更广泛的接受。

数据格式:matlab格式的文档(附城市顺序编码),只要打开matlab,就可以显示详细内容。

计算方法:经济距离矩阵的计算请是按照张学良(2012)的方法计算的。

贸易引力模型是经济学中用来分析国际贸易流量的理论模型,它基于两个国家之间的相对要素丰裕度相互依赖程度。在Python中,我们可以使用`pandas`, `numpy`, `scipy`等库来进行数据处理模型估计。以下是一个简单的贸易引力模型的Python代码示例: ```python import numpy as np import pandas as pd from scipy.optimize import minimize # 假设我们有一个包含国别、GDP(国民生产总值)、人口贸易值的数据框df def gravity_model(df, country_A, country_B, variables=['GDP', 'Population']): # 提取变量值 df_A = df[df['Country'] == country_A][variables] df_B = df[df['Country'] == country_B][variables] # 计算对数贸易值 ln_exports = np.log(df['TradeValue']) # 物价平减指数或购买力平价调整,这里假设为常数1 def ppp_adjustment(exchange_rate): df_A['PPP'] = df_A[variables] * exchange_rate / df_A[variables] df_B['PPP'] = df_B[variables] * exchange_rate / df_B[variables[1]] return ln_exports - np.log(df_A['PPP']) - np.log(df_B['PPP']) # 目标函数:负相关性(最小化绝对值),实际应用可能需要正相关性(最大化) objective = lambda exchange_rate: np.mean(np.abs(ppp_adjustment(exchange_rate))) # 构建优化问题并求解 result = minimize(objective, 1.0, method='SLSQP') # 使用SLSQP算法 # 返回最优的汇率模型输出 return result.x, objective(result.x) # 示例:计算两国之间的贸易引力 country_A = 'USA' country_B = 'China' exchange_rate, trade_value_similarity = gravity_model(your_data_df, country_A, country_B) print(f"两国之间的最优汇率:{exchange_rate}") print(f"贸易价值相似度指数:{trade_value_similarity}") ``` 请确保你的数据框`your_data_df`包含'Country', 'GDP', 'Population', 'TradeValue'等列,这些是模型的基本变量。这个代码只是一个基础框架,实际应用可能需要更多的数据预处理模型改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

精品数据馆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值