人工智能分类浅谈

本文介绍了人工智能的多种分类方法,包括按学派、能力、业务领域、学习方式、实时性、学习步骤、学习技巧、学习轮次、模型种类、任务和模型来划分,涉及符号主义、连接主义、行为主义、弱人工智能、强人工智能、超人工智能等多个概念,以及有监督学习、无监督学习、迁移学习、元学习等学习策略。
摘要由CSDN通过智能技术生成


前言

本文将粗略介绍人工智能的分类


一、什么是人工智能?

通过学习掌握了某种技能的机器,我们认为他具备了人工智能。

二、人工智能的分类

1.按学派分类

符号主义:又被称为逻辑主义,心理学派,专家系统。该学派认为人工智能是源于数学逻辑的,该学派认为人类认知和思维的基本单元为符号,把这种符号输入到能处理符号的计算机中,从而模拟人的认知过程来实现人工智能。

连接主义:又被称为仿生学。该学派是基于神经网络及网络间的连接学习算法的智能模拟方法。

行为主义:又被称为进化主义或控制论学派。研究的是一个群体的行为。

2.按能力分类

弱人工智能:只能处理单一的问题,该模型如果被训练为识别猫狗分类,那么他就只能够处理这个问题。

强人工智能:在各个方面都能够和人类相比。

超人工智能:在各个方面的远超人类。

3.按业务领域分类

信号领域

图像领域:识别/侦测,跟踪,切割,生成

语音领域:

自然语义

自动化

4 .按学习方式分类

有监督:每

人工智能领域涵盖了很多不同的方向,这些方向基于不同的算法和技术,可以用于解决不同的问题。下面将就人工智能领域的几个主要方向进行一些浅谈。 1. 机器学习:机器学习是人工智能领域的一个重要方向,它让计算机能够在没有明确的指示下学习和提高自己的性能。机器学习可以分为监督学习、无监督学习和强化学习等。监督学习是利用标记过的数据,让计算机学习如何进行分类、回归等任务。无监督学习是从无标记的数据中抽取特征并进行分类。强化学习是计算机利用反馈机制不断修正自己的决策策略。 2. 自然语言处理:自然语言处理是一种利用计算机对人类自然语言进行处理的技术。其主要的应用包括语音识别、自然语言理解和自然语言生成等。自然语言处理的发展,将使得计算机能够更好地理解人类的语言,进而实现人机交互和自然语义搜索等功能。 3. 计算机视觉:计算机视觉是指通过计算机对视觉对象进行的识别和学习技术。其应用范围非常广泛,包括人脸识别、场景理解、视觉检测等。随着深度学习算法的发展,计算机视觉领域实现了很多重大突破。 4. 人机交互:人机交互是指人和计算机之间通过各种方式进行沟通交流的技术。该领域涵盖了诸多方向,包括语音识别、手势识别、触摸界面等。人机交互的发展将会让人们更加方便地使用计算机和智能设备,提高其工作和生活效率。 以上这些方向仅仅是人工智能领域的冰山一角,随着科技的进步和人们对于AI技术应用的探索,我们可以期待更多有趣的应用会不断涌现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值