【codevs】3269 混合背包

3269 混合背包
时间限制: 1 s
空间限制: 256000 KB
题目等级 : 钻石 Diamond
题解
题目描述 Description
背包体积为V ,给出N个物品,每个物品占用体积为Vi,价值为Wi,每个物品要么至多取1件,要么至多取mi件(mi > 1) , 要么数量无限 , 在所装物品总体积不超过V的前提下所装物品的价值的和的最大值是多少?

输入描述 Input Description
第一行两个数N,V,下面N行每行三个数Vi,Wi,Mi表示每个物品的体积,价值与数量,Mi=1表示至多取一件,Mi>1表示至多取Mi件,Mi=-1表示数量无限

输出描述 Output Description
1个数Ans表示所装物品价值的最大值

样例输入 Sample Input
2 10

3 7 2

2 4 -1

样例输出 Sample Output
22

多重背包,考虑:如果mi*vi >= V 那么按照完全背包来做;否则,二进制拆分,再按照01背包来做。

#include <bits/stdc++.h>

using namespace std;
const int maxn =  200005;
struct node
{
    int vi;
    int wi;
    int mi;
}vis[205];
int n,v;
int dp[maxn];
void zero_one_package(int ww,int vv)
{
        for(int j=v;j>=vv;j--)
    {
        dp[j]=max(dp[j],dp[j-vv]+ww);
    }
}

void complete_package(int ww,int vv)
{
    for(int j=vv;j<=v;j++)
        dp[j]=max(dp[j],dp[j-vv]+ww);
}
void multi_package(int ww,int vv,int mm)
{
    if(mm*vv >= v)
        complete_package(ww,vv);
    else
    {
        int k=1;
        while(k <= mm)
        {
            zero_one_package(k*ww,k*vv);
            mm -=k;
            k = 2*k;
          // k <<= 1;
        }
        zero_one_package(mm*ww,mm*vv);
    }
}
int main()
{
    cin>>n>>v;
    for(int i=1;i<=n;i++)
    {
        cin>>vis[i].vi>>vis[i].wi>>vis[i].mi;
    }
    for(int i=1;i<=n;i++)
    {
        if(vis[i].mi == 1)
            zero_one_package(vis[i].wi,vis[i].vi);
        else if(vis[i].mi ==-1)
            complete_package(vis[i].wi,vis[i].vi);
        else multi_package(vis[i].wi,vis[i].vi,vis[i].mi);
    }
    cout<<dp[v]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Usher_Ou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值