3269 混合背包
时间限制: 1 s
空间限制: 256000 KB
题目等级 : 钻石 Diamond
题解
题目描述 Description
背包体积为V ,给出N个物品,每个物品占用体积为Vi,价值为Wi,每个物品要么至多取1件,要么至多取mi件(mi > 1) , 要么数量无限 , 在所装物品总体积不超过V的前提下所装物品的价值的和的最大值是多少?输入描述 Input Description
第一行两个数N,V,下面N行每行三个数Vi,Wi,Mi表示每个物品的体积,价值与数量,Mi=1表示至多取一件,Mi>1表示至多取Mi件,Mi=-1表示数量无限输出描述 Output Description
1个数Ans表示所装物品价值的最大值样例输入 Sample Input
2 103 7 2
2 4 -1
样例输出 Sample Output
22
多重背包,考虑:如果mi*vi >= V 那么按照完全背包来做;否则,二进制拆分,再按照01背包来做。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200005;
struct node
{
int vi;
int wi;
int mi;
}vis[205];
int n,v;
int dp[maxn];
void zero_one_package(int ww,int vv)
{
for(int j=v;j>=vv;j--)
{
dp[j]=max(dp[j],dp[j-vv]+ww);
}
}
void complete_package(int ww,int vv)
{
for(int j=vv;j<=v;j++)
dp[j]=max(dp[j],dp[j-vv]+ww);
}
void multi_package(int ww,int vv,int mm)
{
if(mm*vv >= v)
complete_package(ww,vv);
else
{
int k=1;
while(k <= mm)
{
zero_one_package(k*ww,k*vv);
mm -=k;
k = 2*k;
// k <<= 1;
}
zero_one_package(mm*ww,mm*vv);
}
}
int main()
{
cin>>n>>v;
for(int i=1;i<=n;i++)
{
cin>>vis[i].vi>>vis[i].wi>>vis[i].mi;
}
for(int i=1;i<=n;i++)
{
if(vis[i].mi == 1)
zero_one_package(vis[i].wi,vis[i].vi);
else if(vis[i].mi ==-1)
complete_package(vis[i].wi,vis[i].vi);
else multi_package(vis[i].wi,vis[i].vi,vis[i].mi);
}
cout<<dp[v]<<endl;
return 0;
}