支持向量机松弛变量的理解

首先要清楚:
1,线性可分,即能找到超平面,对于硬间隔支持向量机
2,部分点不可分,总体近似可分,近似线性可分,对应软间隔支持向量机
3,线性不可分,需要用到核函数

软间隔支持向量机要加个松弛变量ξ。
我们都知道,硬间隔满足,yi * ( wi * x + b )≥1,这是函数间隔,是几何间隔的||w|| 倍。
由于一些点出现在两条线的间隔内部,函数间隔的约束条件不满足,所以引入松弛变量ξ,使yi * ( wi * x + b ) + ξ ≥1,即:yi * ( wi * x + b ) ≥1 - ξ。对于这些离群点有对应的松弛变量,其他的点是没有松弛变量ξ的。

再来另外一个解释:

1,函数距离与几何距离

你需要明白两个概念,函数距离(函数间隔)和几何距离(几何间隔),先看个图:
这里写图片描述
平行直线1与2之间的垂直距离d,就是几何距离,也就是我们平常计算的两条平行直线之间的距离。函数间隔,就是图中的d帽(暂时这么称呼):

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值