什么是Master定理
简介
Master定理也叫主定理。它提供了一种通过渐近符号表示递推关系式的方法。应用Master定理可以很简便的求解递归方程。然而,Master定理也有其不适用的地方,下面会讲到。
定义
假设有如下递归方程:
其中 n 为问题规模, a 为递推的子问题数量且 a≥1 , nb 为每个子问题的规模(假设每个子问题的规模基本一样)且 b>1 , f(n) 为递推以外进行的计算工作。
设
则
一句话概括就是谁大取谁,相等就乘 lgn 。
不适用范围
如上定义所述,当 g(n)f(n)<=lgn 或 f(n)g(n)<=lgn 时,Master定理是无能为力的。因此,当遇到上面的情况时是不能使用Master定理的。
怎么使用
在应用Master定理时只需自己在心中默默的问上自己几个问题,就可以计算出递归方程的渐进复杂度。下面咱们走上一遍:
- a 是谁, b 是谁, g(n) 是多少, f(n) 又是多少?
- g(n) 大还是 f(n) 大还是一样大?
- 如果 g(n) 大,那么 g(n)f(n)>lgn ?
- 如果 f(n) 大,那么 f(n)g(n)>lgn ?
既然知道了怎么用,那下面就来几个例题再近距离感受下Master定理的强大。
举几个栗子
二分搜索
二分搜索的递归方程如下:
按照上面的步骤,走上一遍试一下:
在这里,
1.
a=1
,
b=2
,
f(n)=1
,那么
g(n)=nlogba=nlog21=1
2.
f(n)=g(n)
3. 因此
T(n)=Θ(g(n)lgn)=Θ(lgn)
怎么样,是不是很简单。再举几个不同的栗子接着感受下
二叉树遍历
二叉树遍历的递归方程如下:
继续按照上面的步骤走:
- a=2 , b=2 , f(n)=1 ,因此, g(n)=n
- g(n) 大
- g(n)f(n)=n>lgn
- 因此 T(n)=Θ(g(n))=Θ(n)
依然不费力气,下面再来一个
随便想的栗子一
递归方程如下所示:
按照上面的步骤走:
- a=2 , b=4 , f(n)=nlgn ,则 g(n)=nlog42<n
- f(n) 大
- f(n)g(n)=nlgnnlog42>lgn
- 因此 T(n)=Θ(f(n))=Θ(nlgn)
随便想的栗子二
递归方程如下:
这次再按照上面的步骤走:
- a=2 , b=2 , f(n)=nlgn , 则 g(n)=n
- f(n) 更大
- f(n)g(n)=lgn≯lgn
- 因此,这个递归方程不能够使用Master定理解决
通过上面的几个栗子应该能对Master定理感觉的差不多了吧?但其实,还是有点小小的问题的。
一点问题
我这篇博客里写的Master定理实际上并不是很严谨,为了更加简便理解与使用对原来的Master定理添加了些自己的理解在里面,完整的Master定理的定义可以参考下面维基百科的描述或者直接到《算法导论》中查看。
当然,我理解的版本的Master定理或许有误,欢迎批评指正。