推荐系统是随着数据爆炸的互联网时代应运而出的一个提升用户搜索效率、增加商家转化率的有效方法。
首先从14年的京东推荐系统切入。关于京东的推荐系统找回模型,基本上是典型的推荐系统典型召回模型的代表,其基于三个维度实现:
基于行为的召回 根据用户购买行为推荐相关/相似的商品。大家都知道根据用户的浏览记录推荐相似商品,但京东更进一步地把购买行为视为一个重要的分界线,当用户已购买某个商品,京东会根据商品种类和用途选择推荐相关/相似的商品,而不是没玩没了地重复推荐,比如为Kindle买家推荐Kindle保护套而不是Kindle。当然,对于如肥皂、洗发水之类的日用品,会根据一个购买周期来再次推荐。
基于用户偏好的召回包括了两个重要的元素:用户画像和多屏互通。结合商品品牌、适用人群、价格指数以及用户对商品的点击、购买、关注和收藏等行为,京东对用户进行画像,从而确定可以长期推荐的品类。针对移动时代的购物新习惯,京东还注意到了根据用户ID及MEI等信息融合不同的终端的数据,包括PC端、移动APP、微信和手Q,从而做到更加精准的画像。当然,在最终的内容展示上,会根据终端的差异选择不同的展示结果。
基于地域的召回,把整个地图划分多个网格运用数据统计结果。以北京为例,三里屯地区用户更感兴趣的商品是扑克牌、水等,中低端小学校的数据主要集中在袜子、晾衣架等等。基于地域的召回主要用于在京东用户行为比较时候少的新用户。
其实这三个方面就是用户行为分析相对笼统基础的三个方面分析用户的方式。有这三个方面作为基础背景,我们介绍当下推荐系统的主流核心思想:
1. 第一种是基于用户购买行为构造itemCF-knn的协同过滤方式,然后通过用户购买的历史行为,分析推荐与用