为什么线性回归模型不适合把字符型特征数值化为有序数据?

问题场景:数据中有一个特征为shape,shape的取值为rectangle和polygon。在训练模型前,需要对该特征进行数值化。因为线性回归模型无法处理字符型特征。常用的数值化思路为将polygon数值化为0,rectangle数值化为1。这一数值化过程是不合理的,原因如下。

线性回归模型对数值大小是敏感的,因为它假设特征值和目标值之间存在线性关系,即特征的数值大小会直接影响预测结果。上述数值化过程引入了大小关系,1(rectangle)>0(polygon),但是实际上是不存在rectangle>polygon这个关系的。

接下来作一些详细解释:

线性回归模型的公式为

在线性模型中,特征的权重决定了这个特征对预测目标的贡献大小。当 w1>0 时,shape值为 1 会使预测的结果增加w1,而为 0 则不会带来额外的贡献.因此,当 w1>0时,模型会认为shape=1shape=0 对预测目标的影响更大”。而在这个回归问题场景下,“hape=1shape=0 对预测目标的影响更大”这个是违背事实的。因此这种引入了大小关系的数值化不适合线性回归模型。

正确的数值化不应让数值化的过程本身对线性回归模型的权重造成错误的影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值