对抗样本方向论文泛读笔记(长期更新)

部分笔记基于知乎博主:咫尺小厘米 - 知乎

1. 黑盒攻击方向

1.1 Natural Color Fool: Towards Boosting Black-box Unrestricted Attacks

代码:   https://github.com/VL-Group/Natural-Color-Fool

无限制黑盒攻击

颜色分布库 Color Distribution Library

作者借鉴了Photographic tone reproduction的思想,基于 ADE20K数据集构建了针对不同语义类的“颜色分布的分布”(“distribution of color distributions“,DoD)。 具体来说,对于每个类别,DoD 提供了 20 个不同的主要分布集(由颜色分布表示),这些分布集是通过基于数据集中相应分割类别的调色板的层次聚类获得的,然后,由于每个簇中语义类的颜色分布相似,我们在每个簇中选择一个对象来表示该样式,最后,我们提取颜色分布形成我们的颜色分布库

Natural Color Fool (NCF) 黑盒攻击主要流程

生成的对抗样本xh'放到代理模型fθ上进行进行攻击,Ladv选用C&W

1.2 Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance

这篇论文的第2部分“Background on Perceptual Color Distance”主要介绍了感知颜色距离(Perceptual Color Distance)的概念,以及它是如何与传统的RGB颜色空间中的距离度量相比较的。下面是对这部分内容的详细解释:

  1. 感知颜色距离的重要性

    • 传统的计算机视觉研究主要关注颜色空间本身,而不是颜色之间的距离。感知颜色距离是指人类视觉系统如何感知颜色之间的差异。
    • 感知颜色距离的研究对于理解人类如何感知颜色变化至关重要,这在图像处理、图像合成和其他视觉任务中非常有用。
  2. CIEDE2000颜色差异公式

    • 论文中使用的感知颜色距离度量是CIEDE2000,这是国际照明委员会(CIE)开发的最新颜色差异标准。
    • CIEDE2000通过添加五个修正项来改进前一版CIELAB颜色空间的定义,这些修正项基于大规模的人类视觉研究,能够更好地模拟人类的颜色感知。
    • CIEDE2000的颜色差异计算涉及到CIELCH颜色空间中的亮度(L)、色度(C)和色相(H)三个通道的差异,以及这些差异之间的交互项。
  3. 像素级感知颜色距离的计算

    • 论文中给出了CIEDE2000颜色差异的计算公式,该公式考虑了像素值在CIELCH空间中的亮度、色度和色相的差异。
    • 公式中的权重函数(SL, SC, SH, RT)和常数(kL, kC, kH)是根据人类视觉感知的实验研究确定的,用于补偿以更好地模拟人类的颜色感知。
  4. 与Lp范数的比较

    • 论文指出,虽然也可以使用Lp范数来度量CIELAB空间中的距离,但这种距离与人类感知的颜色距离相比,CIEDE2000更为准确。
    • 以往的研究中,CIEDE2000主要用于评估图像对的颜色相似性,而在本论文中,作者直接使用CIEDE2000进行优化,而不仅仅是用于评估。
  5. 相关工作

    • 论文提到了一些先前的研究,这些研究采用了CIEDE2000来评估图像对的颜色相似性,例如图像质量评估和图像超分辨率研究。
    • 与这些研究不同,作者在本论文中使用CIEDE2000直接进行优化,并通过反向传播来生成对抗样本。
  6. 像素感知颜色距离pixel-wise perceptual color distance

其中,各个符号代表的含义如下:

  • ∆E00:两个颜色之间的总颜色差异。
  • ∆L′, ∆C′, ∆H′:分别表示在CIELCH颜色空间中,两个颜色的亮度(Lightness)、色度(Chroma)和色相(Hue)之间的差异。
  • kL, kC, kH:是权重因子,用于调整不同颜色通道的重要性。这些权重因子通常在图形艺术应用中设置为1。
  • ∆R:是一个交互项,用于考虑色度和色相差异之间的相互作用。

公式中的每个部分都是对颜色空间中特定维度差异的度量。这些维度在CIELCH颜色空间中定义,它是一个更符合人类视觉感知的颜色空间。CIELCH空间将颜色分为三个维度:亮度(L),色度(C),和色相(H),这与RGB空间的线性模型不同。

CIEDE2000公式的关键在于它考虑了颜色差异的非线性特性,以及人类视觉系统对不同颜色变化的敏感度。例如,人眼对亮度变化的敏感度通常高于色度和色相变化。因此,这个公式通过权重因子kL, kC, kH来调整这些维度的相对重要性。

此外,∆R项考虑了色度和色相之间的相互作用,这在传统的颜色差异度量中通常被忽略。这种相互作用的考虑使得CIEDE2000公式能够更准确地模拟人类对颜色差异的感知。

总的来说,CIEDE2000颜色差异公式提供了一种更为精确的方法来量化颜色之间的感知差异,这对于需要精确控制颜色变化的应用(如图像编辑、颜色匹配和对抗样本生成)非常有用。在对抗样本的生成中,使用CIEDE2000可以帮助创建视觉上难以察觉的扰动,同时保持对抗效果

 

differential_color_functions

"""
CIELAB空间是一种颜色模型,由国际照明委员会(Commission Internationale de l'Éclairage,简称CIE)在1976年定义。
这个模型是为了创建一个更符合人类视觉感知的颜色空间,它将颜色的感知属性分为三个主要的维度:亮度(Lightness,L*)、色度(Chroma,C*)和色相(Hue,H*)。

CIELAB空间的特点如下:

*亮度(L)**:亮度是颜色的明暗程度,它反映了颜色的明度。在CIELAB空间中,亮度的值范围通常是从0(纯黑)到100(纯白)。

*色度(C)**:色度表示颜色的饱和度,即颜色的纯度。一个高色度值意味着颜色非常饱和,而低色度值则表示颜色接近灰色。色度是一个从中心(灰色)向外辐射的度量,不考虑颜色的具体类型。

*色相(H)**:色相描述了颜色的种类,它是一个角度值,用来区分不同的颜色。色相的范围通常是0°到360°,对应于颜色轮上的不同颜色,如红色、绿色、蓝色等

"""
def rgb2lab_diff(rgb_image,device):
    '''
    Function to convert a batch of image tensors from RGB space to CIELAB space.    
    parameters: xn, yn, zn are the CIE XYZ tristimulus values of the reference white point. 
    Here use the standard Illuminant D65 with normalization Y = 100.
    '''
    rgb_image=rgb_image.to(device)
    res = torch.zeros_like(rgb_image) # 初始化一个与输入RGB图像形状相同的零张量,用于存储转换后的CIELAB图像
    xyz_image = rgb2xyz(rgb_image,device) # 将RGB图像转换为XYZ颜色空间,这是转换到CIELAB的中间步骤
    # 定义参考白点(D65)的XYZ值
    xn = 95.0489
    yn = 100
    zn = 108.8840
    # 从XYZ图像中提取X、Y、Z三个颜色通道
    x = xyz_image[:,0, :, :]
    y = xyz_image[:,1, :, :]
    z = xyz_image[:,2, :, :]
    # 计算亮度(L*)分量,这里使用了CIELAB空间的亮度公式
    L = 116*xyz_lab(y/yn,device) - 16
    # 计算a*分量,表示颜色在绿色到红色轴上的位置
    a = 500*(xyz_lab(x/xn,device) - xyz_lab(y/yn,device))
    # 计算b*分量,表示颜色在蓝色到黄色轴上的位置
    b = 200*(xyz_lab(y/yn,device) - xyz_lab(z/zn,device))
    # 将计算出的L*、a*、b*分量分别赋值给结果张量的对应通道
    res[:, 0, :, :] = L
    res[:, 1, :, :] = a
    res[:, 2, :, :] = b
    # 返回转换后的CIELAB图像
    return res




#计算两张图片的ciede2000_diff
def ciede2000_diff(lab1, lab2,device):
    '''
    CIEDE2000 metric to claculate the color distance map for a batch of image tensors defined in CIELAB space
    
    '''
    
    lab1=lab1.to(device)    
    lab2=lab2.to(device)
       
    L1 = lab1[:,0,:,:]
    A1 = lab1[:,1,:,:]
    B1 = lab1[:,2,:,:]
    L2 = lab2[:,0,:,:]
    A2 = lab2[:,1,:,:]
    B2 = lab2[:,2,:,:]   
    kL = 1
    kC = 1
    kH = 1
    
    mask_value_0_input1=((A1==0)*(B1==0)).float()
    mask_value_0_input2=((A2==0)*(B2==0)).float()
    mask_value_0_input1_no=1-mask_value_0_input1
    mask_value_0_input2_no=1-mask_value_0_input2
    B1=B1+0.0001*mask_value_0_input1
    B2=B2+0.0001*mask_value_0_input2 
    
    C1 = torch.sqrt((A1 ** 2.) + (B1 ** 2.))
    C2 = torch.sqrt((A2 ** 2.) + (B2 ** 2.))   
   
    aC1C2 = (C1 + C2) / 2.
    G = 0.5 * (1. - torch.sqrt((aC1C2 ** 7.) / ((aC1C2 ** 7.) + (25 ** 7.))))
    a1P = (1. + G) * A1
    a2P = (1. + G) * A2
    c1P = torch.sqrt((a1P ** 2.) + (B1 ** 2.))
    c2P = torch.sqrt((a2P ** 2.) + (B2 ** 2.))


    h1P = hpf_diff(B1, a1P)
    h2P = hpf_diff(B2, a2P)
    h1P=h1P*mask_value_0_input1_no
    h2P=h2P*mask_value_0_input2_no 
    
    dLP = L2 - L1
    dCP = c2P - c1P
    dhP = dhpf_diff(C1, C2, h1P, h2P)
    dHP = 2. * torch.sqrt(c1P * c2P) * torch.sin(radians(dhP) / 2.)
    mask_0_no=1-torch.max(mask_value_0_input1,mask_value_0_input2)
    dHP=dHP*mask_0_no

    aL = (L1 + L2) / 2.
    aCP = (c1P + c2P) / 2.
    aHP = ahpf_diff(C1, C2, h1P, h2P)
    T = 1. - 0.17 * torch.cos(radians(aHP - 39)) + 0.24 * torch.cos(radians(2. * aHP)) + 0.32 * torch.cos(radians(3. * aHP + 6.)) - 0.2 * torch.cos(radians(4. * aHP - 63.))
    dRO = 30. * torch.exp(-1. * (((aHP - 275.) / 25.) ** 2.))
    rC = torch.sqrt((aCP ** 7.) / ((aCP ** 7.) + (25. ** 7.)))    
    sL = 1. + ((0.015 * ((aL - 50.) ** 2.)) / torch.sqrt(20. + ((aL - 50.) ** 2.)))
    
    sC = 1. + 0.045 * aCP
    sH = 1. + 0.015 * aCP * T
    rT = -2. * rC * torch.sin(radians(2. * dRO))

#     res_square=((dLP / (sL * kL)) ** 2.) + ((dCP / (sC * kC)) ** 2.) + ((dHP / (sH * kH)) ** 2.) + rT * (dCP / (sC * kC)) * (dHP / (sH * kH))

    res_square=((dLP / (sL * kL)) ** 2.) + ((dCP / (sC * kC)) ** 2.)*mask_0_no + ((dHP / (sH * kH)) ** 2.)*mask_0_no + rT * (dCP / (sC * kC)) * (dHP / (sH * kH))*mask_0_no
    mask_0=(res_square<=0).float()
    mask_0_no=1-mask_0
    res_square=res_square+0.0001*mask_0    
    res=torch.sqrt(res_square)
    res=res*mask_0_no


    return res

perc_al

def quantization(x):
   """quantize the continus image tensors into 255 levels (8 bit encoding)"""
   x_quan=torch.round(x*255)/255 
   return x_quan

class PerC_AL:
    """
    PerC_AL: Alternating Loss of Classification and Color Differences to achieve imperceptibile perturbations with few iterations.

    Parameters
    ----------
    max_iterations : int
        Number of iterations for the optimization.
    alpha_l_init: float
        step size for updating perturbations with respect to classification loss
    alpha_c_init: float
        step size for updating perturbations with respect to perceptual color differences
    confidence : float, optional
        Confidence of the adversary for Carlini's loss, in term of distance between logits.
        Note that this approach only supports confidence setting in an untargeted case
    device : torch.device, optional
        Device on which to perform the adversary.

    """

    def __init__(self,
             max_iterations: int = 1000,
             alpha_l_init: float = 1.,
             #for relatively easy untargeted case, alpha_c_init is adjusted to a smaller value (e.g., 0.1 is used in the paper) 
             alpha_c_init: float = 0.5,
             confidence: float = 0,
             device: torch.device = torch.device('cpu')
                ) -> None:
        self.max_iterations = max_iterations #1000
        self.alpha_l_init = alpha_l_init     #1
        self.alpha_c_init = alpha_c_init     #0.5
        self.confidence = confidence        #40
        self.device = device
    #model:Inception v3  target=False  inputs:干净样本=[B,3,299,299]  labels:这些样本的标签  targeted=False
    def adversary(self, model: nn.Module, inputs: torch.Tensor, labels: torch.Tensor,
               targeted: bool = True) -> torch.Tensor:
        """
        Performs the adversary of the model given the inputs and labels.

        Parameters
        ----------
        model : nn.Module
            Model to fool.
        inputs : torch.Tensor
            Batch of image examples in the range of [0,1].
        labels : torch.Tensor
            Original labels if untargeted, else labels of targets.
        targeted : bool, optional
            Whether to perform a targeted adversary or not.

        Returns
        -------
        torch.Tensor
            Batch of image samples modified to be adversarial
        """

        if inputs.min() < 0 or inputs.max() > 1: raise ValueError('Input values should be in the [0, 1] range.')

        alpha_l_min=self.alpha_l_init/100  #alpha_l_min=0.01
        alpha_c_min=self.alpha_c_init/10   #alpha_c_min=0.05
        multiplier = -1 if targeted else 1 #multiplier=1

        X_adv_round_best=inputs.clone()
        inputs_LAB=rgb2lab_diff(inputs,self.device) #获取干净RGB图片对应的CIELAB图片
        batch_size=inputs.shape[0]
        delta=torch.zeros_like(inputs, requires_grad=True)
        mask_isadv= torch.zeros(batch_size,dtype=torch.uint8).to(self.device) #[B]全0的tensor
        color_l2_delta_bound_best=(torch.ones(batch_size)*100000).to(self.device) #[B]全100000的tensor

        if (targeted==False) and self.confidence!=0:
            labels_onehot = torch.zeros(labels.size(0), 1000, device=self.device) #[B,1000]全0tensor
            labels_onehot.scatter_(1, labels.unsqueeze(1), 1)
            labels_infhot = torch.zeros_like(labels_onehot).scatter_(1, labels.unsqueeze(1), float('inf')) #[B,1000]全0tensor
        if (targeted==True) and self.confidence!=0:
            print('Only support setting confidence in untargeted case!')
            return
        for i in range(self.max_iterations): #1到1000
            # cosine annealing for alpha_l_init and alpha_c_init   max_iterations=1000,pi=Π
            alpha_c=alpha_c_min+0.5*(self.alpha_c_init-alpha_c_min)*(1+cos(i/self.max_iterations*pi)) #alpha_c=0.5 pixel-wise perceptual color distance 每次迭代的步长
            alpha_l=alpha_l_min+0.5*(self.alpha_l_init-alpha_l_min)*(1+cos(i/self.max_iterations*pi)) #alpha_l=1.0 对应L2攻击每次迭代的步长
            loss = multiplier * nn.CrossEntropyLoss(reduction='sum')(model((inputs+ delta-0.5)/0.5), labels) #loss黑盒对抗损失
            loss.backward()
            grad_a=delta.grad.clone() #grad_a=[B,3,299,299] loss对 对抗样本 的梯度
            delta.grad.zero_() #~mask_isadv默认=全1,图片没有部分被掩盖 ,delta.data清空=全0的[B,3,299,299]的tensor permute(1,2,3,0)使得B到最后  permute(3,0,1,2)又把B调回第一
            delta.data[~mask_isadv]=delta.data[~mask_isadv]+alpha_l*(grad_a.permute(1,2,3,0)/torch.norm(grad_a.view(batch_size,-1),dim=1)).permute(3,0,1,2)[~mask_isadv]  
            d_map=ciede2000_diff(inputs_LAB,rgb2lab_diff(inputs+delta,self.device),self.device).unsqueeze(1)  #干净样本的CIELAB图片 和对抗样本的CIELAB图片 之间的pixel-wise perceptual color distance
            color_dis=torch.norm(d_map.view(batch_size,-1),dim=1) #color_dis=[5]的tensor
            color_loss=color_dis.sum()
            color_loss.backward()

            grad_color=delta.grad.clone()
            delta.grad.zero_()
            delta.data[mask_isadv]=delta.data[mask_isadv]-alpha_c* (grad_color.permute(1,2,3,0)/torch.norm(grad_color.view(batch_size,-1),dim=1)).permute(3,0,1,2)[mask_isadv]        

            delta.data=(inputs+delta.data).clamp(0,1)-inputs
            X_adv_round=quantization(inputs+delta.data)  #X_adv_round=torch.round((inputs+delta)*255)/255
            #C&W评估样本对抗性
            if (targeted==False) and self.confidence!=0:  #targeted=False,confidence=40
                logits = model((X_adv_round-0.5)/0.5)    #logits=[B,1000],进入softmax之前的评分矩阵
                real = logits.gather(1, labels.unsqueeze(1)).squeeze(1)  #ft(x')
                other = (logits - labels_infhot).max(1)[0]               #maxfi≠t(x')
                print(f'第{i}轮:置信度{real - other}')
                mask_isadv=(real - other)<=-40                           #ft(x')-maxfi≠t(x')<=-40 才算攻击成功,给该部分mask上
            elif self.confidence==0:
                if targeted:
                    mask_isadv=torch.argmax(model((X_adv_round-0.5)/0.5),dim=1)==labels
                else:
                    mask_isadv=torch.argmax(model((X_adv_round-0.5)/0.5),dim=1)!=labels    
            mask_best=(color_dis.data<color_l2_delta_bound_best)
            mask=mask_best * mask_isadv
            color_l2_delta_bound_best[mask]=color_dis.data[mask]
            X_adv_round_best[mask]=X_adv_round[mask]

        return X_adv_round_best

复现的隐蔽性效果

几乎没有太大区别

  • 10
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值