由于大量的数据分析都是基于Pandas完成的,Pandas中为DataFrame集成了plot()函数,该函数对plt.plot()函数进行了封装以完成快速绘画。方便在分析过程中数据分析人员经常会快速对数据进行可视化。本文章记录如何直接使用DataFrame中的plot()函数,
1 .Pandas基础绘图
DataFrame中的plot()函数是为了快速探索数据而产生,因此绘图方法中只提供了除默认线图之外的少数绘图方法。这些方法可以作为plot()函数的kind关键字参数提供。具体包括:
bar或barh:条形图或水平条形图;
hist:直方图;
boxplot:箱线图,也称为盒子图、盒型图;
area:区域填充图,也称为面积图;
scatter:散点图。
import pandas as pd
import numpy as np
%matplotlib inline
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
# 绘制条形图
df.plot(kind='bar')
# 通过指定参数方式和使用df.plot.bar()函数的效果是完全等价的
#df.plot.bar()
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
# 绘制堆叠条形图,修改参数stacked=True
df.plot(kind='bar',stacked=True)
# 绘制水平条形图
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot(kind='barh',stacked=True)
# 绘制直方图
df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000)},
columns=['a', 'b'])
df.plot(kind='hist')
#df.plot.hist(bins=20)
# 绘制饼状图
df = pd.DataFrame(100 * np.random.rand(5), index=['a', 'b', 'c', 'd','e'], columns=['sales'])
df.plot(kind='pie',subplots=True)
#df.plot.pie(subplots=True)
# 绘制箱线图
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot(kind='box')
#df.plot.box()
# 绘制面积填充图
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot(kind='area')
#df.plot.area()
# 绘制散点图
df = pd.DataFrame(np.random.rand(100, 2), columns=['a', 'b'])
df.plot(x='a',y='b',kind='scatter')
#df.plot.scatter(x='a', y='b')