python 数据分析 |5. 数据可视化-Pandas绘图

由于大量的数据分析都是基于Pandas完成的,Pandas中为DataFrame集成了plot()函数,该函数对plt.plot()函数进行了封装以完成快速绘画。方便在分析过程中数据分析人员经常会快速对数据进行可视化。本文章记录如何直接使用DataFrame中的plot()函数,

1 .Pandas基础绘图

        DataFrame中的plot()函数是为了快速探索数据而产生,因此绘图方法中只提供了除默认线图之外的少数绘图方法。这些方法可以作为plot()函数的kind关键字参数提供。具体包括:

        bar或barh:条形图或水平条形图;

        hist:直方图;

        boxplot:箱线图,也称为盒子图、盒型图;

        area:区域填充图,也称为面积图;

        scatter:散点图。

import pandas as pd
import numpy as np
%matplotlib inline

df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
# 绘制条形图

df.plot(kind='bar')

# 通过指定参数方式和使用df.plot.bar()函数的效果是完全等价的
#df.plot.bar()


df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
# 绘制堆叠条形图,修改参数stacked=True
df.plot(kind='bar',stacked=True)


# 绘制水平条形图
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot(kind='barh',stacked=True)

# 绘制直方图
df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000)},
                   columns=['a', 'b'])
df.plot(kind='hist')
#df.plot.hist(bins=20)

# 绘制饼状图
df = pd.DataFrame(100 * np.random.rand(5), index=['a', 'b', 'c', 'd','e'], columns=['sales'])
df.plot(kind='pie',subplots=True)
#df.plot.pie(subplots=True)


# 绘制箱线图
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot(kind='box')
#df.plot.box()

# 绘制面积填充图
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot(kind='area')
#df.plot.area()

# 绘制散点图
df = pd.DataFrame(np.random.rand(100, 2), columns=['a', 'b'])
df.plot(x='a',y='b',kind='scatter')
#df.plot.scatter(x='a', y='b')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马蹄疾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值