- 博客(199)
- 资源 (43)
- 收藏
- 关注

原创 ChatGPT技术原理解析:从RL之PPO算法、RLHF到GPT4、instructGPT
本篇ChatGPT笔记会全力做到,通俗易懂且循序渐进(尽最大努力让每一个初学者哪怕是文科生都能没有障碍的读懂每一字一句、每一个概念、每一个公式)一方面,对于想了解ChatGPT背后原理和如何发展而来的,逐一阐述从GPT/GPT2/GPT3到强化学习、PPO算法,最后再到instructGPT、ChatGPT、SeqGAN且本文之前,99%的文章都不会把PPO算法从头推到尾,本文会把PPO从零推到尾,按照“RL-策略梯度-重要性采样(重要性权重)-TRPO(增加信任区域和KL散度约束)-PPO”的顺序逐步
2023-01-15 22:01:27
120890
121

原创 程序员面试、算法研究、编程艺术、机器学习、大模型/ChatGPT等6大系列集锦
程序员面试、算法研究、编程艺术、红黑树、机器学习5大经典原创系列集锦与总结作者:July--结构之法算法之道blog之博主。时间:2010年10月-2018年5月,一直在不断更新中..出处:http://blog.csdn.net/v_JULY_v。说明:本博客中部分文章经过不断修改、优化,已集结出版成书《编程之法:面试和算法心得》。前言 开博4年有余,...
2020-01-05 20:42:56
670365
500

原创 如何通俗理解Word2Vec (23年修订版)
在继续聊 Word2vec 之前,先聊聊 NLP (自然语言处理)。NLP 里面,最细粒度的是词语,词语组成句子,句子再组成段落、篇章、文档。所以处理 NLP 的问题,首先就要拿词语开刀。咱们居住在各个国家的人们通过各自的语言进行交流,但机器无法直接理解人类的语言,所以需要先把人类的语言“计算机化”,那如何变成计算机可以理解的语言呢?我们可以从另外一个角度上考虑。举个例子,对于计算机,它是如何判断一个词的词性,是动词还是名词的呢?
2019-10-23 19:28:18
73635
38

原创 CNN笔记:通俗理解卷积神经网络
通俗理解卷积神经网络(cs231n与5月dl班课程笔记)1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。 本博客内写过一些机器学习相关的文章,但上一...
2016-07-02 22:14:50
671766
374

原创 支持向量机通俗导论(理解SVM的三层境界)
支持向量机通俗导论(理解SVM的三层境界)作者:July 。致谢:pluskid、白石、JerryLead。说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月。声明:本文于2012年便早已附上所有参考链接,并注明是篇“学习笔记”,且写明具体参考了pluskid等人的文章。文末2013年的PDF是为证。另...
2012-06-01 22:48:43
1261525
800

原创 从头到尾彻底理解KMP(2014年8月22日版)
从头到尾彻底理解KMP作者:July时间:最初写于2011年12月,2014年7月21日晚10点 全部删除重写成此文,随后的半个多月不断反复改进。后收录于新书《编程之法:面试和算法心得》第4.4节中。1. 引言 本KMP原文最初写于2年多前的2011年12月,因当时初次接触KMP,思路混乱导致写也写得混乱。所以一直想找机会重新写下KMP,但苦于一...
2011-12-05 13:05:28
633547
608
原创 从零实现带RLHF的类ChatGPT:逐行解析微软DeepSpeed Chat
如此文所述,微软开源的DeepSpeed Chat(简称DSC)实现的不错,会给你一个完整而通透的“PPO算法/RLHF”的代码实现全流程,好的资料可以让你事半功抠完它的关键代码后,你会发现和之前本博客内另一篇写的原理部分都一一对应起来了(ChatGPT技术原理解析,只有懂原理才能更好的理解实现或实际实现,特别是该文的第三部分),而把论文、原理/算法、公式、代码一一对应,可以让你的理解有个质变微软开源的DeepSpeed Chat :一键式RLHF训练,可以用于自己训练ChatGPT中文版。
2023-09-17 10:46:29
1324
7
原创 知识图谱实战导论:从什么是KG到LLM与KG/DB的结合实战
DB-GPT基于 FastChat 构建大模型运行环境,并提供 vicuna 作为基础的大语言模型。此外,通过LangChain提供私域知识库问答能力,且有统一的数据向量化存储与索引:提供一种统一的方式来存储和索引各种数据类型,同时支持插件模式,在设计上原生支持Auto-GPT插件,具备以下功能或能力根据自然语言对话生成分析图表、生成SQL与数据库元数据信息进行对话, 生成准确SQL语句与数据对话, 直接查看执行结果。
2023-09-16 11:22:14
1183
原创 大模型并行训练指南:通俗理解Megatron-DeepSpeed之模型并行与数据并行
BLOOM 的模型架构与GPT3非常相似,只是增加了一些改进,本文稍后将对此进行讨论。该模型是在Jean Zay上训练的,Jean Zay 是由 GENCI 管理的法国政府资助的超级计算机,安装在法国国家科学研究中心 (CNRS) 的国家计算中心IDRIS。训练所需的算力由 GENCI 慷慨捐赠给本项目 (捐赠号 2021-A0101012475)。GPU: 384 张 NVIDIA A100 80GB GPU (48 个节点) + 32 张备用 GPU。
2023-08-24 14:58:54
1378
原创 学术论文GPT的源码解读与微调:从chatpaper、gpt_academic到七月论文审稿GPT
总之,够未来半年忙了。为加快这个事情的进度,本文解读两个关于学术论文的GPT(因为我司每周都有好几个或为申博、或为评职称、或为毕业而报名论文1V1发表辅导的,比如中文期刊、EI会议、ei期刊/SCI等等,所以对这个方向一直都是高度关注,我司也在做类似的LLM产品,敬请期待)之前7月中旬,我曾在微博上说准备做“20个LLM大型项目的源码解读”针对这个事,目前的最新情况是。
2023-08-12 16:21:17
3167
5
原创 LLM高效参数微调方法:从Prefix Tuning、Prompt Tuning、P-Tuning V1/V2到LoRA、QLoRA
常规部分的正向传播由transformers所定义,而LoRA部分的正向传播则由LinearLayer_LoRA(nn.Module)的forward()所定义,即“LoRA层的两条分支结果进行加和”,如下图所示『一般用随机高斯分布初始化,当然实际代码实现时,比如微软的deepspeed chat在用到LoRA时,一开始通过0矩阵占位,然后调用搭配ReLU激活函数的kaiming均匀分布初始化。,相当于在训练期间,较小的权重矩阵(下图中的A和B)是分开的,但一旦训练完成,权重可以合并到一个新权重矩阵中。
2023-08-05 10:47:47
2759
5
原创 基于LangChain+LLM的本地知识库问答:从企业单文档问答到批量文档问答
本文则侧重讲解1 什么是LangChain及langchain的整体组成架构2 解读langchain-ChatGLM项目的关键源码,不只是把它当做一个工具使用,因为对工具的原理更了解,则对工具的使用更顺畅3 langchain-ChatGLM项目的升级版langchain-chatchat
2023-07-05 11:45:17
23045
41
原创 baichuan7B/13B的原理与微调:从baichuan的SFT实现到baichuan2的RLHF实现
2023年7月11日,百川智能发布Baichuan-13B(这是其GitHub地址Baichuan-13B 是继 Baichuan-7B 之后开发的包含 130 亿参数的开源可商用的大规模语言模型,本次发布包含以下两个版本预训练(对齐(,July注:我看了下代码,这里的对齐指的是通过对话数据对齐,即只做了SFT,没做RLHF)更大尺寸、更多数据Baichuan-13B 在 Baichuan-7B 的基础上进一步扩大参数量到130亿,并且在高质量的语料上训练了1.4。
2023-07-05 11:34:45
5141
11
原创 医疗金融法律大模型:从ChatDoctor到BloombergGPT/FinGPT/FinBERT、ChatLaw/LawGPT_zh
第一部分 各种医疗类ChatGPT:或中英文数据微调LLaMA、或中文数据微调ChatGLM1.1基于LLaMA微调的中英文版ChatDoctor11.1.1 ChatDoctor:通过self-instruct技术提示API的数据和医患对话数据集微调LLaMA
2023-07-05 10:45:26
6468
原创 图像分割的大变革:从SAM(分割一切)到FastSAM、MobileSAM
SAM就是一类处理图像分割任务的通用模型。与以往只能处理某种特定类型图片的图像分割模型不同,SAM可以处理所有类型的图像。在SAM出现前,基本上所有的图像分割模型都是专有模型。比如,在医学领域,有专门分割核磁图像的人工智能模型,也有专门分割CT影像的人工智能模型。但这些模型往往只在分割专有领域内的图像时,才具有良好性能,而在分割其他领域的图像时往往性能不佳。
2023-07-02 19:03:34
2749
3
原创 CV多模态和AIGC的原理解析:从CLIP、BLIP到Stable Diffusion、Midjourney
终于开写本CV多模态系列的核心主题:stable diffusion相关的了,为何执着于想写这个stable diffusion呢,源于三点确实非常非常多的朋友都看过我那篇SVM笔记,影响力巨大,但SVM笔记之后,也还是写了很多新的博客/文章滴,包括但不限于:xgboost、CNN、RNN、LSTM、BERT等今后基本每季度都有更新的计划,欢迎常来关于Stable Diffusion,可以先看下这篇的文章”(此篇文章也是本文的重要参考之一)
2023-06-22 00:13:58
6129
2
原创 AI绘画与CV多模态能力的起源:从VAE、扩散模型DDPM、DETR到ViT/MAE/Swin transformer
2018年我写过一篇博客,叫:《》,该文相当于梳理了2019年之前CV领域的典型视觉模型,比如随着2019 CenterNet的发布,特别是2020发布的DETR(End-to-End Object Detection with Transformers)之后,自此CV迎来了生成式下的多模态时代但看这些模型接二连三的横空出世,都不用说最后爆火的GPT4,便可知不少CV同学被卷的不行。
2023-04-30 10:56:28
8923
10
原创 从零实现Transformer的简易版与强大版:从300多行到3000多行
transformer强大到什么程度呢,基本是17年之后绝大部分有影响力模型的基础架构都基于的transformer(比如,有200来个,包括且不限于基于decode的GPT、基于encode的BERT、基于encode-decode的T5等等)通过博客内的这篇文章《》,我们已经详细了解了transformer的原理(如果忘了,建议先务必复习下再看本文)
2023-04-12 18:24:41
23328
33
原创 详解带RLHF的类ChatGPT:从TRL、ChatLLaMA到ColossalChat、DSC
如果未提供模板,则使用默认模板artifacts/generate_rewards.py,注:所有模板都必须保存在一个名为 .json 的 JSON 文件中templates.json。其中列表包含多个dictionaries,每个dictionary 对应一个数据样本,建议使用超过 1000 个数据样本来进行对actor的训练。在获得最终模型权重后,还可通过量化降低推理硬件成本,并启动在线推理服务,仅需单张约 4GB 显存的 GPU 即可完成 70 亿参数模型推理服务部署。
2023-04-06 18:49:43
15483
8
原创 ChatGLM-6B与ChatGLM2-6B的部署/微调/实现:从GLM到6B的LoRA/P-Tuning微调、及6B源码解读
随着『GPT4多模态/Microsoft 365 Copilot/Github Copilot X/ChatGPT插件』的推出,绝大部分公司的技术 产品 服务,以及绝大部分人的工作都将被革新一遍类似iPhone的诞生 大家面向iOS编程 有了App Store现在有了ChatGPT插件/GPT应用商店,以后很多公司 很多人面向GPT编程(很快技术人员分两种,一种懂GPT,一种不懂GPT)然ChatGPT/GPT4基本不可能开源了,而通过上文《
2023-03-31 16:40:41
32441
6
原创 LLaMA的解读与其微调:Alpaca-LoRA/Vicuna/BELLE/中文LLaMA/姜子牙/LLaMA 2
还开始研究一系列开源模型(包括各自对应的模型架构、训练方法、训练数据、本地私有化部署、硬件配置要求、微调等细节)该项目部分一开始是作为此文《》的第4部分,但但随着研究深入 为避免该文篇幅又过长,将把『第4部分 开源项目』抽取出来 独立成本文。
2023-03-22 14:45:28
45092
11
原创 LLM/ChatGPT与多模态必读论文150篇(已更至第101篇)
2022年8月发布的Stable Diffusion基于Latent Diffusion Models,专门用于文图生成任务。总之,读的论文越多,博客内相关笔记的质量将飞速提升 自己的技术研究能力也能有巨大飞跃。且考虑到为避免上篇文章篇幅太长而影响完读率,故把这100论文的清单抽取出来独立成本文。// 23年2.27日起,本榜单几乎每天更新中。
2023-03-13 21:54:14
23935
13
原创 强化学习极简入门:通俗理解MDP、DP MC TC和Q学习、策略梯度、PPO
强化学习里面的概念、公式,相比ML/DL特别多,初学者刚学RL时,很容易被接连不断的概念、公式给绕晕,而且经常忘记概念与公式符号表达的一一对应(包括我自己在1.10日之前对好多满是概念/公式的RL书完全看不下去,如今都看得懂了,故如果读文本之前,你正在被RL各种公式困扰,相信看完这篇RL极简入门后就完全不一样了)。
2023-02-10 11:12:38
22493
69
原创 Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT
我在写上一篇博客《》时,有读者在文章下面评论道:“july大神,请问BERT的通俗理解还做吗?”,我当时给他发了张俊林老师的BERT文章,所以没太在意。直到今天早上,刷到CSDN上一篇讲BERT的文章,号称一文读懂,我读下来之后,假定我是初学者,读不懂。(这是),再比如国内张俊林老师的这篇《》,然后你会发现几乎网上关于Transformer/BERT的文章无外乎是以下这几种情况。
2022-10-23 23:03:05
55935
92
原创 22下半年:来长沙建第二支团队与所读的33本书(含哲学政法经济书单/笔记)
自从之前写了这三篇文章:《我的求学十年(00至10)》、《我的十年青春(10至20)》、《20 21九死一生、22上半年读20本书》之后,我便决心每隔半年便把过程中的创业历程与读书笔记记录下来,一为不断反思,二 也为自己的人生做个见证,见证自己始终在不断的创造价值、造福社会、推动社会,也算不枉此生。
2022-10-11 16:35:03
16625
15
原创 20 21九死一生、22上半年读20本书(含15本管理书单/笔记):继续百年征程
前言大家都知道九死一生这个词,但基本上除非真正经历过九死一生,不然每个人都很难真正体会。两年的5月份,写了一篇十年总结,名为《我的十年青春(10至20):写博10年1700万PV、创业5年30万学员》,如今刚好过去两年,这两年发生的每一件事都令我印象太深刻了,实在是有必要记录下。20上半年在之前那篇十年青春也提到了,20年春节期间看了不少书,比如《曾国藩传》,下面这张照片则基本把曾国藩一生道尽了,他47岁起在家蛰居的两年 大彻大悟,不再似一个刺到处乱扎,从此其为人处世成为后世很多人学习的榜样
2022-05-29 17:20:11
10442
4
原创 通俗理解卡尔曼滤波(无人驾驶感知融合的经典算法)
前言说来惭愧,我个人也算有近10年AI教育经验,中间获得过一些名号,比如北理工校外导师,微软MVP兼CSDN技术专家,本博客也有1700多万PV了,在AI圈内还是有很高知名度的。后2015年和团队一块创业创办AI职教平台「七月在线」,至今已近7年,这6 7年我们把AI做透了,同行没做的我们做,同行没有的广度我们有,同行不到的深度我们到。六年多来,在专注做成人AI职教的同时,面对过很多行业的刺激,但自始至终都坚持专注AI。但过程中越发深刻意识到,AI只有与行业深度结合绑...
2021-09-17 11:22:37
23515
20
原创 我的求学十年(00至10):从中学到大学,年少轻狂立大志
前言今天凌晨4点多,闺女饿醒了,喂完牛奶后她继续睡了,可我就一直辗转反侧,再没入睡了,更糟糕的是因为凌晨4点半这个时间点,让我想到高中课本上川端康成的一篇文章开头“凌晨4点半醒来,看到海棠花未眠”(都怪我这该死的文学素养),然后我就想为何对这些如此记忆深刻,原来根源是从小学、初中到高中都遇到了不错的语文老师,不断激发自己对文学的兴趣和热情,这一想可还得了,直接就回忆起00年到10年这10年间的求学岁月:小学五六年级(再小没多少印象了)、初中、高中、大学(大一大二,之后的事在另外一篇十年青春里了),就更睡
2021-04-12 09:23:57
20387
62
原创 GNN通俗笔记:图神经网络在推荐/广告中的应用
主题是图神经网络在推荐广告场景中的一个应用,分享的内容分为三大块:第一个是图神经网络的一个介绍;然后第二块就是图神经网络在推荐广告中的一些应用、一些案例;然后第三块是图神经网络在工业界落地的时候,它需要有哪些必要的组件。因为我们不仅仅需要有图神经网络的这些个算法,还需要一些其他的工程组件,算是一个组合。
2021-03-14 16:05:59
14311
6
原创 年薪翻倍的100篇面经:如何转型AI拿到阿里等大厂的40万offer
前言我个人从 2010 年开始在 CSDN 写博客,坚持了十年, 创业 则已近五年,经历且看过很多的人和事,但看到这一篇篇透露着面经作者本人的那股努 力、那股不服输的劲的面经的时候,则让我倍感励志。比如“双非渣本三年 100 次面试经历精选:从最初 iOS 前端到转型面机器学习” 这篇面经,便让我印象非常深刻。在佩服主人公毅力和意志的同时,也对他愿意分享对 众多人有着非常重要参考价值和借鉴意义的成功经验倍感欣慰。当然,类似的面经远远不止于此,我们后来整理出了100篇面经,汇总成册为《名企 AI 面经
2020-11-23 12:06:08
44773
54
原创 机器学习面试150题:不只是考SVM xgboost 特征工程
前言本博客曾经在10~13年连续4年整理过各大公司数据结构和算法层面的笔试题、面试题,很快,2014年之后,机器学习大伙,很多公司开始招AI方面的人才,很多同学也会从网上找各种各样的机器学习笔试题、面试题,但和数据结构方面的题不同,AI的题网上极少。2017年起,我和团队开始整理BAT机器学习面试1000题系列,几万人开始追踪,目前七月在线官网/APP的题库已聚集AI笔试面试题4000题,今日起,我们会根据机器学习、深度学习、CV、NLP、推荐系统等各方向精选相关的面试题,供大家找工作中随时查阅、复
2020-08-29 12:15:29
58798
62
原创 我的十年青春(10至20):写博10年1700万PV、创业5年30万学员
写博与创业:10年1600万PV,5年30万学员养成记前沿距离上一篇博客又过去了大半年,世事难料,特别是今年上半年突发新冠肺炎,打乱了很多人、公司的计划和节奏,多难兴邦,目前疫情即将完全过去,今天正好是5.20,在这个特殊的日子小有感慨,加之如今写博十年、创业五年,也到了该总结一下的时候,包括我们去年19年便经历过很多事,有些事 如果不及时总结 可能就忘掉了曾经的经验/教训,为了不致忘却 时常自省,特陈此文。第一阶段:创业前的五年:写博、读书会、面试&算法讲座2010年..
2020-05-23 18:56:46
44557
91
原创 推荐引擎算法学习导论:协同过滤、聚类、分类(2011年旧文)
推荐引擎算法学习导论:协同过滤、聚类、分类作者:July出处:结构之法算法之道引言 昨日看到几个关键词:语义分析,协同过滤,智能推荐,想着想着便兴奋了。于是昨天下午开始到今天凌晨3点,便研究了一下推荐引擎,做了初步了解。日后,自会慢慢深入仔细研究(日后的工作亦与此相关)。当然,此文也会慢慢补充完善。 本文作为对推荐引擎的初步...
2020-01-05 20:47:04
93865
54
原创 如何从RNN起步,一步一步通俗理解LSTM
如何从RNN起步,一步一步通俗理解LSTM前言提到LSTM,之前学过的同学可能最先想到的是ChristopherOlah的博文《理解LSTM网络》,这篇文章确实厉害,网上流传也相当之广,而且当你看过了网上很多关于LSTM的文章之后,你会发现这篇文章确实经典。不过呢,如果你是第一次看LSTM,则原文可能会给你带来不少障碍:...
2019-05-06 23:47:54
160195
106
原创 如何通俗理解EM算法
如何通俗理解EM算法前言 了解过EM算法的同学可能知道,EM算法是数据挖掘十大算法,可谓搞机器学习或数据挖掘的基本绕不开,但EM算法又像数据结构里的KMP算法,看似简单但又貌似不是一看就懂,想绕开却绕不开的又爱又恨,可能正在阅读此文的你感同身受。 一直以来,我都坚持一个观点:当你学...
2018-08-15 18:43:47
126505
89
原创 通俗理解kaggle比赛大杀器xgboost
通俗理解kaggle比赛大杀器xgboost说明:若出现部分图片无法正常显示而影响阅读,请以此处的文章为准:xgboost 题库版。时间:二零一九年三月二十五日。0 前言xgboost一直在竞赛江湖里被传为神器,比如时不时某个kaggle/天池比赛中,某人用xgboost于千军万马中斩获冠军。而我们的机器学习课...
2018-08-04 14:18:38
139759
66
原创 一文通透优化算法:从梯度下降、SGD到牛顿法、共轭梯度(23修订版)
一文通透优化算法:从随机梯度、随机梯度下降法到牛顿法、共轭梯度1 什么是梯度下降法经常在机器学习中的优化问题中看到一个算法,即梯度下降法,那到底什么是梯度下降法呢?维基百科给出的定义是梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近...
2018-08-01 23:23:34
25566
5
原创 一文读懂特征工程
一文读懂特征工程 作者:July说明:本文是七月在线机器学习第九期第五次课 特征工程的课程笔记,课程主讲老师:寒小阳 加号 张雨石 Johnson,本笔记得到寒小阳等相关老师的校对。时间:二零一八年七月三十一日。 0 前言我所在公司七月在线每个月都是各种机器学习、深度学...
2018-07-31 20:24:01
23561
6
原创 一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD前言之前我所在的公司七月在线开设的深度学习等一系列课程经常会讲目标检测,包括R-CNN、Fast R-CNN、Faster R-CNN,但一直没有比较好的机会深入(但当你对目标检测有个基本的了解之后,再看这些课程你会收益很大)。但目标检测这个领域实在是太火了,经常会看到一些写的不...
2018-05-02 18:41:26
121344
28
翻译 图解CNN:通过100张图一步步理解CNN
图解CNN:通过100张图一步步理解CNN作者:@Brandon Rohrer,链接:http://brohrer.github.io/how_convolutional_neural_networks_work.html译者:@zhwhong,链接:https://www.jianshu.com/p/fe428f0b32c1说明:本文被收录于七月在线APP 大题查看 深度学习第35题。本质上来讲...
2018-03-06 17:42:16
46051
14
程序员编程艺术第一~三十七章集锦 高清完整PDF版
2013-12-10
微软面试100题系列之高清完整版PDF文档[带目录+标签]by_July
2012-09-20
最新十五个经典算法研究与总结之高清完整PDF文档[带目录+标签]by_July
2012-08-05
结构之法算法之道blog博文集锦第7期CHM文件
2012-07-29
程序员编程艺术第一 ~二十七章(教你如何编程)高清完整PDF版by_July
2012-04-25
读书会·北京第1期之DeepQA框架&Siri;架构PPT
2012-02-13
基于给定的文档生成倒排索引的全部源码
2012-01-10
结构之法算法之道博文集锦最新第五期(July、10.31日制作)
2011-10-31
微软等数据结构+算法面试100题全部答案集锦
2011-10-15
十三个经典算法研究PDF文档[带目录+标签]
2011-07-08
结构之法 算法之道 第一期博文CHM文件集锦[版权所有,侵权必究]
2011-03-06
数学建模10大算法详解+程序源码打包
2011-01-29
[最新答案V0.4版]微软等数据结构+算法面试100题[第41-60题答案]
2011-01-04
红黑树的c实现源码与教程
2011-01-03
[开源分享]推荐一款界面超酷的Pocket PC 掌上电脑[源码下载]
2010-12-08
[珍藏版]微软等数据结构+算法面试100题全部出炉[100题V0.1最终完美版]
2010-12-06
新鲜出炉:微软等数据结构+算法面试100题第81-100题[V0.1版最后20题]
2010-12-05
[最新整理公布][汇总II]微软等数据结构+算法面试100题[第1-80题]
2010-11-20
[汇总I]精选微软等数据结构+算法面试100题[第1-60题]
2010-11-12
[答案V0.2版]精选微软数据结构+算法面试100题[前20题]
2010-11-06
[第二部分]精选微软等公司结构+算法面试100题[41-60题]
2010-11-05
[总结]各大内部排序算法性能比较+程序实现
2010-11-01
[答案V0.1版]精选微软数据结构+算法面试100题[前25题]
2010-10-30
windows程序设计第5版.pdf
2010-10-25
[极品收藏]Windows 核心编程完整中文pdf版(下)
2010-10-25
[极品收藏]Windows 核心编程完整中文pdf版(中)
2010-10-25
[极品收藏]Windows 核心编程完整中文pdf版(上)
2010-10-25
侯捷+深入浅出MFC 2e part5.pdf
2010-10-25
侯捷+深入浅出MFC 2e part4.pdf
2010-10-25
侯捷+深入浅出MFC 2e part3.pdf
2010-10-25
侯捷+深入浅出MFC 2e part2.pdf
2010-10-25
侯捷+深入浅出MFC 2e part1.pdf
2010-10-25
[第一部分]精选微软等公司数据结构+算法经典面试100题[1-40题]
2010-10-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人