DFS深度优先搜索

这篇博客探讨了深度优先搜索(DFS)和宽度优先搜索(BFS)在解决排列问题和八皇后问题中的应用。通过实例展示了如何使用DFS和BFS来实现字典序排列和避免皇后冲突的棋盘布局。文章还提供了C++代码示例,解释了算法的工作原理,并讨论了两种搜索策略的时间复杂度。
摘要由CSDN通过智能技术生成

学习笔记

1、深度优先搜索

2、宽度优先搜索

3、树与图的存储

4、树与图的深度优先遍历

5、树与图的宽度优先遍历

6、拓扑排序

深度优先搜索和宽度优先搜索都可以对整个空间进行像树一样的搜索,只是顺序不一样。

DFS每一次都尽量到尽头,然后再回溯一步,看回溯的节点里是否还有其它节点,如果有,就继续往下走;如果没有,就继续回溯。

BFS层层搜索,同时看很多条路,每次拓展一层。

BFS和DFS的区别

 例题1:

给定一个整数 n,将数字 1∼n排成一排,将会有很多种排列方法。

现在,请你按照字典序将所有的排列方法输出。


输入格式

共一行,包含一个整数 n。


输出格式

按字典序输出所有排列方案,每个方案占一行。


数据范围

1≤n≤7

输入样例:

3

输出样例:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

DFS要找到它的顺序,也叫暴搜,形式可以看成递归。

以样例为例分析顺序。

 系统有隐藏的栈给我们路径。

设数组path[N]储存某个位置(下划线)上的数是多少

从第零个位置开始递归:dfs(0)

当走到第(u == n)个位置时,下划线上已经被填满数了。

  当u < n时,找到没有被用过的数字填进新的位置里(建立数组str[i]标记已被用过的数字)

当走到底部时,回溯上一个点的同时要恢复现场,及恢复这个点的所有操作,例如标记清空。

#include <iostream>

using namespace std;

const int N = 10;

int n;
int path[N];
bool st[N];

void dfs(int u)
{
    if (u == n)
    {
        for (int i = 0; i < n; i ++ ) printf("%d ", path[i]);
        puts("");
        return;
    }
    
    for (int i = 1; i <= n; i ++ )
    {
        if (!st[i])
        {
            path[u] = i;
            st[i] = true;
            dfs(u + 1);
            st[i] = false;
        }
    }
}

int main()
{
    cin >> n;
    
    dfs(0);
    
    return 0;
}

ps:代码是y总课上教的。

例题2

n−皇后问题是指将 n 个皇后放在 n×n的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

现在给定整数 n,请你输出所有的满足条件的棋子摆法。

输入格式

共一行,包含整数 n。

输出格式

每个解决方案占 n行,每行输出一个长度为 n

的字符串,用来表示完整的棋盘状态。

其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。

每个方案输出完成后,输出一个空行。

注意:行末不能有多余空格。

输出方案的顺序任意,只要不重复且没有遗漏即可。

数据范围

1≤n≤9

输入样例:

4

输出样例:

.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..

我们从第(u == 1)层开始找皇后的位置,

对于第i个位置,判断它的列,斜对角线,反斜线上是否有皇后,如果没有皇后,就把皇后放下,继续到下一行;如果有,就把第i个位置往右挪动。

可以利用坐标找到对应的存放斜对角线和反斜线的数组

u是x,表示第几层;

i是y,表示第几列。

 时间复杂度n * n !

c ++代码

#include <iostream>

using namespace std;

const int N = 20//(斜线的个数是2n-1);

int n;
char g[N][N];
bool col[N], dg[N], udg[N];

void dfs(int u)
{
    if (u == n)
    {
        for (int i = 0; i < n; i ++ ) puts(g[i]);
        puts("");
        return;
    }
    
    for (int i = 0; i < n; i ++ )
    {
        if (!col[i] && !dg[u + i] && !udg[n - i + u])//斜线的数组下标是坐标截距,如图。
        {
            g[u][i] = 'Q';
            col[i] = dg[u + i] = udg[n - i + u] = true;
            dfs(u + 1);
            col[i] = dg[u + i] = udg[n - i + u] = false;
            g[u][i] = '.';
        }
    }
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < n; j ++ )
        {
            g[i][j] = '.';
        }
    }
    dfs(0);
    
    return 0;
}

拓展

另一种做法

第一个格子要不要放皇后,要一条分支,不要一条分支。

 

#include <iostream>

using namespace std;

const int N = 20;

int n;
char g[N][N];
bool row[N], col[N], dg[N], udg[N];

void dfs(int x, int y, int s)
{
    if (y == n) y = 0, x ++ ;
    
    if (x == n)
    {
        if (s == n)
        {
            for (int i = 0; i < n; i ++ ) puts(g[i]);
            puts("");
        }
        return;
    }
    
    dfs(x, y + 1, s);
    
    if (!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n])
    {
        g[x][y] = 'Q';
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
        dfs(x, y + 1, s + 1);
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
        g[x][y] = '.';
    }
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < n; j ++ )
        {
            g[i][j] = '.';
        }
    }
    dfs(0, 0, 0);
    
    return 0;
    
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值