算法题最大异或对详解

 题目描述

在给定的 N 个整数 A1,A2……AN 中选出两个进行 xor(异或)运算,得到的结果最大是多少?

输入格式

第一行输入一个整数 N。

第二行输入 N个整数 A1~AN。

输出格式

输出一个整数表示答案。

数据范围

1≤N≤105,
0≤Ai<231


输入样例:

3
1 2 3

输出样例:

3

(暴力枚举) 

异或;二进制不进位加法

时间复杂度
(On)x1e5遍历

C++ 代码
 

int res = 0;//(两数异或的最小值为0)
for (int i = 0; i < n; i ++ )
{
    for (int j = 0; j < i; j ++)//5与3的异或和3与5的异或是一样的,所以拿一个就行:j < i;
    {
        res = max(res, a[i] ^ a[j]);
    }
}

我们利用tire结构对暴力枚举的第二层循环进行优化
即:固定ai,在a0 ~ai-1中找到异或最大的数。

由数据范围0≤Ai<231可知,ai可以看成长度为31的二进制数组。

 

因为每个位置上只有0,1两种数字,所以可以把它变成tire数
又因为查询的是最大异或对,所以建tire树时以高位优先,高位越大,二进制数越大。
 

 

以5, 6, 3建tire树找异或对为例
(5:101)(6:110)(3:011)

 

先插入,再查询,已查询和3(011)最大的异或对

可得最大异或对为二进制110即十进制为6。

 


 时间复杂度
31 x 1e5;
每一次只需要31位就可以找到异或最大值

C++ 代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 31 * N;

int n;
int a[N];
int son[M][2], idx;

void insert(int x)
{
    int p = 0;
    for (int i = 30; i >= 0; i -- )
    {
        int u = x >> i & 1;//取出x二进制的第i位数是什么;
        if (!son[p][u]) son[p][u] = ++ idx;
        p = son[p][u];
    }
}

int query(int x)
{
    int p = 0, res = 0;
    for (int i = 30; i >= 0; i -- )
    {
        int u = x >> i & 1;
        if (son[p][!u])//指节点p的子节点中的!u分支
        {
            p = son[p][!u];
            res = res * 2 +!u;
        }
        else
        {
            p = son[p][u];
            res = res * 2 + u;
        }
    }
    
    return res;
}

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
    
    int res = 0;
    
    for (int i = 0; i < n; i ++ )
    {
        insert(a[i]);
        int t = query(a[i]);
        res = max(res, a[i] ^ t);//a[i]^t是a[i]与t的异或最大值。
    }
    printf("%d\n", res);
    
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值