题目描述
在给定的 N 个整数 A1,A2……AN 中选出两个进行 xor(异或)运算,得到的结果最大是多少?
输入格式
第一行输入一个整数 N。
第二行输入 N个整数 A1~AN。
输出格式
输出一个整数表示答案。
数据范围
1≤N≤105,
0≤Ai<231
输入样例:
3
1 2 3
输出样例:
3
(暴力枚举)
异或;二进制不进位加法
时间复杂度
(On)x1e5遍历
C++ 代码
int res = 0;//(两数异或的最小值为0)
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < i; j ++)//5与3的异或和3与5的异或是一样的,所以拿一个就行:j < i;
{
res = max(res, a[i] ^ a[j]);
}
}
我们利用tire结构对暴力枚举的第二层循环进行优化
即:固定ai,在a0 ~ai-1中找到异或最大的数。
由数据范围0≤Ai<231可知,ai可以看成长度为31的二进制数组。
因为每个位置上只有0,1两种数字,所以可以把它变成tire数
又因为查询的是最大异或对,所以建tire树时以高位优先,高位越大,二进制数越大。
以5, 6, 3建tire树找异或对为例
(5:101)(6:110)(3:011)
先插入,再查询,已查询和3(011)最大的异或对
可得最大异或对为二进制110即十进制为6。
时间复杂度
31 x 1e5;
每一次只需要31位就可以找到异或最大值
C++ 代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 31 * N;
int n;
int a[N];
int son[M][2], idx;
void insert(int x)
{
int p = 0;
for (int i = 30; i >= 0; i -- )
{
int u = x >> i & 1;//取出x二进制的第i位数是什么;
if (!son[p][u]) son[p][u] = ++ idx;
p = son[p][u];
}
}
int query(int x)
{
int p = 0, res = 0;
for (int i = 30; i >= 0; i -- )
{
int u = x >> i & 1;
if (son[p][!u])//指节点p的子节点中的!u分支
{
p = son[p][!u];
res = res * 2 +!u;
}
else
{
p = son[p][u];
res = res * 2 + u;
}
}
return res;
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
int res = 0;
for (int i = 0; i < n; i ++ )
{
insert(a[i]);
int t = query(a[i]);
res = max(res, a[i] ^ t);//a[i]^t是a[i]与t的异或最大值。
}
printf("%d\n", res);
return 0;
}