题目描述
给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角 (n,m)处,至少需要移动多少次。
数据保证 (1,1)处和 (n,m) 处的数字为 0,且一定至少存在一条通路。
输入格式
第一行包含两个整数 n和 m。
接下来 n行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。
输出格式
输出路径坐标。
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤100
样例
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
c ++ 代码
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
int g[N][N];//把地图记录下来
int d[N][N];//记录下每个点到起点的距离。
PII q[N * N], Prev[N][N];//q 记为队列, Prev[x][y]记录为点(x, y)是由哪一个点过来的
int bfs()
{
int hh = 0, tt = 0;//队头队尾
q[0] = {0, 0};
memset(d, -1, sizeof d);//没走过的距离都初始化为-1
d[0][0] = 0;//(0,0)为起点
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};//上下左右移动改为坐标的变化。
while (hh <= tt)
{
auto t = q[hh ++ ];
for (int i = 0; i < 4; i ++ )
{
int x = t.first + dx[i], y = t.second + dy[i];
if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
{
d[x][y] = d[t.first][t.second] + 1;
Prev[x][y] = t;//Prev[x][y]指(x, y)这个点的前一个点
q[++ tt] = {x, y};
}
}
}
int x = n - 1, y = m - 1;
while (x || y)
{
cout << x << ' ' << y << endl;
auto t = Prev[x][y];
x = t.first, y = t.second;
}
return d[n - 1][m - 1];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin >> g[i][j];
cout << bfs() << endl;
return 0;
}
输入样例为例,画图解析数组
对于队列q[N * N]
如果题目不要求路径,可以不要Prev数组