利用DPCM&Huffman编码实现数据压缩_C语言实现

本文介绍了利用DPCM差分预测编码调制和Huffman编码实现数据压缩的原理与实验流程。在DPCM系统中,通过预测器和量化器设计,减少了图像间的冗余。实验中,对不同量化位数的预测误差进行Huffman编码,比较了DPCM结合熵编码与仅熵编码的压缩效率。文章展示了实验结果,包括原图、预测误差图像、重建图像及概率分布图。
摘要由CSDN通过智能技术生成

一、实验原理

       DPCM是差分预测编码调制的缩写,它利用过去的抽样值来预测当前的抽样值,对它们的差值进行编码。差值编码可以提高编码频率,这种技术已应用于模拟信号的数字通信之中。图像内的像素值之间并非相互独立,某一像素与周围像素之间存在一定的关系,这一关系导致整幅图像的信息熵不是很大。DPCM利用当前像素值减去前一像素值,得到差值,以减少图像之间的冗余,原理图如下。


      在DPCM系统中,需要注意的是预测器的输入是已经解码以后的样本。之所以不用原始样本来做预测,是因为在解码端无法得到原始样本,只能得到存在误差的样本。因此,在DPCM编码器中实际内嵌了一个解码器,如编码器中虚线框中所示。

二、实验流程

      在一个DPCM系统中,有两个因素需要设计:预测器和量化器。理想情况下,预测器和量化器应进行联合优化。实际中,采用一种次优的设计方法:分别进行线性预测器和量化器的优化设计。

      在本次实验中,我们采用固定预测器和均匀量化器。预测器采用左侧、上方预测均可; 量化器采用 8 比特均匀量化。

      首先读取一个256级的灰度图像,采用自己设定的预测方法计算预测误差,并对预测误差进行8比特均匀量化。还可对预测误差进行1比特、2比特和4比特的量化设计。

      在DPCM编码器实现的过程中可同时输出预测误差图像和重建图像。将原始图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值