Pytorch练手
vancooler
cs学徒/天天偷看大牛的博客/SDU
展开
-
Pytorch 4.6 练手
一个实现线性回归的pytorch 代码,由于之前已经安装好,此处不在赘述具体过程。 ''' 继承nn.Module实现全连接层 ''' import torch as t from torch import nn class Linear(nn.Module): def __init__(self, in_features, out_features): #在构造函...原创 2019-04-06 21:49:16 · 220 阅读 · 0 评论 -
TensorboardX 学习
因为论文需要学习了pytorch,其中的TensorboardX可视化非常有意思,按照他人的教程写了几个Demo 以下代码在cmd或者Terminal的当前python文件目录下输入 都可以显示 tensorboard --logdir=./logs 1.graph ,ResNet网络结构展示 from tensorboardX import SummaryWriter import...原创 2019-05-02 11:41:45 · 201 阅读 · 0 评论 -
关于net.train 和 net.eval 以及加载断点模型 一些小事
在训练模型时会在前面加上: model.train() 1 在测试模型时在前面使用: model.eval() 1 同时发现,如果不写这两个程序也可以运行,这是因为这两个方法是针对在网络训练和测试时采用不同方式的情况,比如Batch Normalization 和 Dropout。 训练时是正对每个min-batch的,但是在测试中往往是针对单张图片,即不存在min-batch的概念。由于网...转载 2019-04-23 15:17:46 · 379 阅读 · 0 评论 -
detach的理解
detach所做的就是,重新声明一个变量,指向原变量的存放位置,但是requires_grad为false.更深入一点的理解是,计算图从detach过的变量这里就断了, 它变成了一个leaf_node.即使之后重新将它的requires_node置为true,它也不会具有梯度. 来源: https://www.jianshu.com/p/f1bd4ff84926 ...转载 2019-05-01 10:11:02 · 591 阅读 · 0 评论