从联邦国家到联邦大语言模型

"联邦"(Federation)不但是个政治概念,在技术领域也发挥着作用。

联邦国家

"联邦"(Federation)描述由多个独立的实体组成一个国家的政治制度。各成员实体保留一定程度的自治权力,同时也将一部分权力和职责授予中央政府,以实现协同合作和管理国家事务。这种制度常被用于处理多元文化、语言、宗教和地理差异,以实现国家的统一和合作。美国就是联邦体制的例子。

6dc7ae83f4c3041e2fc0b2fb7ff0b4f8.png

图示:美国南北战争时期的美国联邦架构图

联邦技术

"联邦"在技术上通常指的是一种机制,允许用户访问多个独立的系统、应用程序或资源,而无需在每个系统中单独进行身份验证和系统配置。这一机制在联邦的成员系统之间建立了一系列统一规则,以形成协作。

历史上出现了一些广泛应用的联邦技术:

  • 联邦数据库技术(Federated Database System): 多个数据库实例协同工作,使用户能够检索来自不同数据库的数据。这在大型组织和跨部门项目中简化了数据管理。

  • 联邦身份管理(Federated Identity Management): 联邦身份管理是一种身份验证和访问管理方法,允许用户在多个组织或系统之间共享身份信息和权限。它在跨组织合作、单一登录和数据共享方面非常有用,Single Sign On (SSO)是联邦身份管理的一个示例。

  • 联邦搜索(Federated Search): 允许用户在一个单一的搜索界面中同时查询多个独立的数据源或搜索引擎,然后将结果合并在一起呈现给用户。这有助于用户从多个来源检索信息,而不必分别搜索每个源。联邦搜索通常用于集成多个数据库、文件存储库、网站或应用程序的搜索功能,提供更全面的搜索结果。比如Kayak.com和qunar.com(去哪儿网)等机票搜索引擎往往在数以百计的网站上进行联邦搜索,以获得机票比价结果。

  • 联邦云计算(Cloud Federation): 将私有云、社区云和公有云集成到可扩展的计算平台中,通过使用通用标准连接不同云提供商的云环境。

  • 联邦学习(Federated Learning): 联邦学习是一种机器学习方法,允许多个参与方在不共享原始数据的情况下协同训练模型。这在隐私敏感的应用领域,如医疗保健和金融服务,非常有用。

联邦学习

借用Google Cloud的定义:联邦学习是一种机器学习(ML)技术,允许多个组织或同一组织内的群组以协作和迭代的方式训练和改进共享的全局机器学习模型。使用此方法时,不会在单个设备或群组之外共享数据。参与的组织形成一个可以由各种配置(如地理区域和时区)或同一组织内的不同业务部门组成的联邦。

ac1963cb9b102444a19e8b6973d5c588.png

图:Google的智能手机键盘输入预测联邦学习

在Google Research Blog 《Federated Learning: Collaborative Machine Learning without Centralized Training Data》一文,描述了联邦学习改进智能手机键盘输入的文本预测功能:一个全局共识模型被下载到各个用户的手机。用户手机根据各自使用情况进行训练,在本地生成个性化模型,然后将多用户的模型发送到云端进行聚合,最终形成新的共识模型,进行新一轮迭代。

联邦学习还包括但不限于以下领域:

  • 医疗保健: 联邦学习用于合并多个医疗机构的医疗数据,以共同训练疾病预测模型,同时不会暴露病人的个人健康信息。这提高了疾病预测和诊断的准确性,同时保护了患者的隐私。

  • 金融服务: 银行和金融机构可以采用联邦学习来共同改进欺诈检测模型。各家银行可以合作,但无需共享客户交易数据,以识别欺诈行为。

  • 智能家居设备: 智能家居设备制造商可以使用联邦学习来改进语音助手、智能恒温器等设备的性能。这些设备可以本地训练,然后通过联邦学习方法,制造商可以提供更准确的更新模型,而无需访问或共享用户的语音或生活数据。

  • 电子邮件垃圾邮件过滤: 电子邮件服务提供商可以使用联邦学习来改进垃圾邮件过滤器的性能。用户的电子邮件内容可以在本地处理,而模型的改进可以通过联邦学习方法传播给所有用户。

这些案例突显了联邦学习的优势,即在协作和改进机器学习模型的同时,保护了数据的隐私和安全。

联邦大语言模型

随着大语言模型的发展,联邦机制也逐渐引入到模型训练和推理过程中。联邦化模型训练和推理不仅继承了联邦学习对数据隐私的保护,还能够降低成本、提高算力资源的使用效率。

FedML是一家积极开发相关技术的公司,他们推出了FedLLM,一个结合了联邦学习和大语言模型(LLM)的框架,实现了数据、计算和模型的联邦化。

  • 数据协作: FedLLM的“Train on the Edge”联邦学习训练Pipeline允许在特定领域的专有数据上进行大语言模型的训练。这对于分散存储在不同数据仓库中的数据集尤为重要,以安全且可扩展的方式进行处理。

  • 计算协作: 利用分散的计算资源是一项昂贵的任务。通过建立一个跨组织的共享机制,FedLLM的“Train on the Cloud”平台能够将训练工作分布到地理分布的CPU/GPU网络上,从而减轻了企业购买计算资源的财务压力。

  • 模型协作: 通过联邦模型推理,FedLLM提出了一种使用地理分布的云计算资源来进行大模型推理的方法。这种方法允许在推理请求被发送到推理端点时,将请求路由到托管在GPU供应商的分散边缘节点上,从而共享GPU的闲置时间。这种联邦模式提高了服务可靠性,降低了云计算成本。

0f9dd4cb80d17c6b8b67fe2742c2908c.pngFedML提供了一个FedLLM实现聊天应用的示例,见上图。在这个场景中,各成员公司可以将私有聊天数据保持在本地,只有模型参数和权重数据在联邦服务器和本地服务器之间传递。这种方法结合了本地数据训练和中央服务器微调训练,以提供个性化的聊天应用。

FedML获得了1300万美元种子资金,其中包括陆奇的奇绩创坛等风险投资。FedLM正在开发一系列软件包和API(如下图所示)来实现统一且可扩展的分布式/联邦化的大规模机器学习能力。

8edf200711c5a59a8bd0c9512d637f89.png

图:FedML软件特性概览:FedML Cheetah – 以用户友好的分布式训练加速模型训练;FedML Parrot - 在真实世界中模拟联邦学习(1)使用单一进程模拟联邦学习(2)基于MPI的联邦学习模拟器(3)基于NCCL的联邦学习模拟器(速度最快);FedML Octopus - 跨组织/账户训练的跨界联邦学习,包括基于Python的边缘SDK;FedML Beehive - 用于智能手机和物联网设备的跨设备联邦学习,包括适用于Android/iOS和嵌入式Linux的边缘SDK;FedML MLOps - FedML的机器学习运营Pipeline,用于在任何规模的任何地方运行人工智能;模型服务:专注于提供更好的边缘人工智能用户体验。

总结

联邦本是一种平衡集中和分散权力的政治制度,实现国家的统一和协同合作,同时尊重各个成员实体的自治权和多元性。历史表明,技术领域常常借鉴这种政治概念,在多元、异构、独立和自治的成员系统上通过实现统一和协作的机制,形成一个更为强大的元系统。现在,FedML等公司继续以联邦方案解决当今人工智能大语言模型的高成本和数据隐私等核心问题。尽管技术尚未成熟,但联邦机制在未来发展中很可能扮演关键角色。我们拭目以待。

部分参考材料

https://commons.wikimedia.org/wiki/File:Diagram_of_the_Federal_Government_and_American_Union_edit.jpg

https://developer.nvidia.com/blog/federated-learning-clara/

https://blog.research.google/2017/04/federated-learning-collaborative.html

https://techcrunch.com/2023/07/19/fedml-raises-11-5-to-combine-mlops-tools-with-a-decentralized-ai-compute-network/

https://github.com/FedML-AI/FedML

https://medium.com/@FedML/fedml-ai-platform-releases-the-worlds-federated-learning-open-platform-on-public-cloud-with-an-8024e68a70b6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值