大语言模型(LLM)驱动的智能体(AI Agent)展现出许多传统软件所不具备的特征。不仅与传统软件的设计理念、方法、工具和技术栈有显著的差异,AI原生(AI Native)的智能体还融入了多种新概念和技术。我们从多个维度对AI Native智能体与传统软件进行了比较和分析,涉及开发语言、软件架构、设计模式和编程模式等多个方面。
图:本文梳理的智能体软件设计模式和发展脉络
本文梳理智能体软件设计模式和快速发展的脉络。我们可以看到,以大模型推理为核心的AI原生软件开发,其设计模式和软件架构与传统软件相比有显著的不同;其发展就是一个不断挖掘、扩展和发挥大语言模型推理能力的过程,一“脉”相承。
设计模式
结构化工程 (Structured Engineering)
vs.
智能体推理(Agentic Reasoning)
设计模式是一套代码设计经验的抽象和总结,是对某类特定问题的通用解决方案。通过设计模式可以提高代码的可维护性、可重用性和可扩展性。
图:《设计模式:可复用面向对象软件的基础》(Design Patterns: Elements of Reusable Object-Oriented Software)是有关面向对象软件设计模式的一本书,提出和总结了对于23种常见软件设计问题的标准解决方案,称为软件设计模式。该书作者是Erich Gamma、Richard Helm、Ralph Johnson和John Vlissides,后以“四人帮”(Gang of Four,GoF)著称(图片来自: WikiPedia)
设计模式是计算机相关专业的必修课之一。资深Java程序员们也一般都会对Factory、Proxy、Facade等面向对象软件设计模式有所了解。对于Web和移动应用程序员们,对模型-视图-控制器(MVC)的模式则一定不会感到陌生。
在AI 智能体开发中,大模型的出现和发展导致了软件设计模式出现了变化。我们发现,这个变化围绕着应用大模型推理的能力,以及充分挖掘大模型推理的潜力的底层逻辑展开。吴恩达博士在最近的演讲中,把这些模式称为“Agentic Reasoning”系统的设计模式。在本节里,我们简单地梳理Agentic Reasoning发展的脉络。
大模型推理(Reasoning)
首先是大语言模型推理(Reasoning)。大语言模型的推理是在AI软件应用不同于传统软件应用的根本特点。这可以说是最为基础的AI-Native设计模式。
思维链(Chain of Thought/CoT)
思维链的方法在提示中通过一步一步的推理和逻辑连接,将复杂问题拆解成一系列简单的问题,从而让大语言模型模拟或促进逻辑推理和决策过程,得出最终结论。
图:左侧的例子的提示中直接要求大模型推理,