NAS 论文笔记:NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search

NSGANetV2:进化的多目标代理辅助神经体系结构搜索  

(最近看了一些论文,写在Word上面,有的时候在其他设备上查找的时候很麻烦,干脆写个博客)

这篇论文提出了一个高效的NAS算法,用于生成在多个竞争目标下具有竞争力的特定任务。 包含两个代理模型

(1)一个在体系结构级别,来提高的效率。

(2)一个在权重级别,通过超网,来提高梯度下降的训练效率。

 

1. 简介

神经体系结构搜索(NAS)尝试自动执行神经网络架构搜索过程,以找到给定数据集的良好体系结构。

人们希望使用NAS在自定义非标准数据集上获得高性能模型,优化可能的多个竞争目标,并在没有现有NAS方法繁重的计算负担的情况下这样做。

NAS的目标是获得最佳架构及其相关的最佳权重。NAS通常被视为双层优化问题,其中内部优化针对给定体系结构遍历网络的权重,而外部优化则遍历网络体系结构本身。解决此问题的计算挑战来自上层和下层优化。在较低级别中学习网络的最佳权重需要进行随机梯度下降的昂贵迭代。

 

在本文中,我们通过在上层和下层同时采用显式代理模型,提出了一种实用有效的NAS算法。我们的下层代理采用微调方法,其中微调的初始权重是通过超网模型获得的。我们的上层代理采用在线学习算法,该算法专注于搜索空间中接近当前权衡前沿的架构,而不是离线代理方法中使用的随机/统一架构集。

 

Multi-objective evolutionary federated learning (MEFL) is a machine learning approach that combines the principles of multi-objective optimization and federated learning. Multi-objective optimization is a technique that aims to optimize multiple objectives simultaneously, while federated learning is a decentralized machine learning approach that allows multiple devices to train a model collaboratively without sharing their data. MEFL is designed to overcome the limitations of traditional federated learning approaches, which often suffer from issues related to privacy, communication, and scalability. By using multi-objective optimization, MEFL can optimize the performance of the federated learning algorithm while also addressing these issues. MEFL works by dividing the optimization problem into multiple objectives, such as minimizing the loss function, reducing communication costs, and preserving privacy. A genetic algorithm is then used to optimize these objectives simultaneously, producing a set of Pareto-optimal solutions that represent the trade-offs between the different objectives. These Pareto-optimal solutions can then be used to select the best model for deployment, depending on the specific requirements of the application. MEFL has been shown to be effective in a wide range of applications, including image classification, natural language processing, and speech recognition. Overall, MEFL represents a promising approach to federated learning that can improve the privacy, communication, and scalability of the algorithm while also optimizing its performance.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值