NAS进化学习(EA)方向综述

文章介绍了神经网络架构搜索(NAS)的三种主要方法,包括基于强化学习、梯度和进化算法的方式。ENAS作为一种进化算法方式,其流程包括初始化、搜索空间优化和返回结果。文章详细讨论了ENAS的背景,特别是基于进化算法和群智感知的搜索策略,如遗传算法、粒子群优化等,并提到了常用的神经网络类型如CNN和RNN。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文献:A Survey on Evolutionary Neural Architecture Search

1 NAS分类

  • 强化学习方式
  • 梯度方式
  • 进化算法方式(envolutional nas, ENAS)
    基于强化学习的方式需要运行很久,在中等数据规模上,一般数千个GPU需运行几天。
    基于梯度的方式需要提前构建一个supernet,需要很强的专业知识。
    基于进化算法的方式,主要包括遗传算法(Genetic Algorithms, GAs)、遗传规划(Genetic Programming, GP)、粒子群算法((Particle Swarm Optimization, PSO)等。

2 ENAS背景

2.1 进化流程图

ENAS主要的算法流程如下,①初始化空间,包括初始种群的选取以及初始种群的适应度评估 ②搜索空间,包括对种群的择优选择,进化操作,继续进行适应度评估,再如此循环,直到达到终止条件(epoches或者loss不下降)③返回最终结果
图1 ENAS主要的算法流程

2.2 搜索策略

如图2所示,ENAS主要分类为基于进化算法(Envolutionary Algorithm)和基于群智感知(Swarm Intelligence , SI)以及其它三类。

EA_basedSI_based
基因算法(Genetic Algorithm, GA)粒子群优化(Particle Swarm Optimization, PSO)
遗传规划(Genetic Programming, GP)蚁群优化(Ant Colony Optimization, ACO)
进化策略(Envolutionary Strategy, ES)

其它:差分进化(DE) 萤火虫算法(FA)
图2 ENAS搜索策略

2.2 常用的神经网络

ENAS常用的神经网络如图3所示,它可以大致分为五个不同的类别:CNN,深度信念网络(DBN),堆叠自编码器(SAE),循环神经网络(RNN)等。
图3 常用的网络模型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值