# More Cowbell

Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into k boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.

Kevin is a meticulous cowbell collector and knows that the size of his i-th (1 ≤ i ≤ n) cowbell is an integer si. In fact, he keeps his cowbells sorted by size, so si - 1 ≤ si for any i > 1. Also an expert packer, Kevin can fit one or two cowbells into a box of size s if and only if the sum of their sizes does not exceed s. Given this information, help Kevin determine the smallest s for which it is possible to put all of his cowbells into k boxes of size s.

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <functional>
#include <cmath>
#include <cctype>
#include <cfloat>
#include <climits>
#include <complex>
#include <deque>
#include <list>
#include <set>
#include <utility>
using namespace std;

int s[100010];
priority_queue<int,vector<int>,greater<int> > pq;

int main()
{
//freopen("in.txt","r",stdin);
int n,k;
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",s+i);
}
int temp;
int ans=0;
for(int i=0;i<k;i++)
pq.push(0);
for(int i=n;i>0;i--){
temp=pq.top();
pq.pop();
if(temp!=0)
ans=max(ans,temp+s[i]);
else
pq.push(s[i]);
}
while(!pq.empty()){
temp=pq.top();
pq.pop();
}
ans=max(ans,temp);
printf("%d\n",ans);
return 0;
}

02-26 188

05-04 304

02-18 236

03-04 157

11-01 242

12-03 262

12-02 700

12-03 249

02-02 15