Matrix

链接:http://poj.org/problem?id=2155

题目:Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].

题意:有一个矩阵,里面所有数字都是0,有两种操作,c操作,把一个矩形里的数字都取非,q操作,展示某个点的值。

分析:这道题是今天补得,这种状态有限且循环的题是可以记录改变次数,通过次数求解的,所以用二位的树状数组记录改变次数即可。然而,每个点都记录是不行的,一个巧妙的办法是,改变的时候,只更改矩形起点处的改变次数,以及另外三个边界点之后的点的改变次数。这样区域内的点在计算更改次数时通过树状数组的特性就是更改过一次的,而超过区域的在计算的时候与原来相比更改了0或者2次,即为没更改过。这个技巧非常巧妙。

题解:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <functional>
#include <cmath>
#include <cctype>
#include <cfloat>
#include <climits>
#include <complex>
#include <deque>
#include <list>
#include <set>
#include <utility>
#define rt return
#define fr freopen("in.txt","r",stdin)
#define fw freopen("out.txt","w",stdout)
#define ll long long
#define ull unsigned long long
#define detie ios_base::sync_with_stdio(false);cin.tie(false);cout.tie(false)
#define pii pair<int,int>
#define lowbit(x) x&(-x)
using namespace std;
#define maxi 0x3f3f3f3f
#define MAX 1005

int bit[MAX][MAX];
int X;
int N, T;

void add(int x, int y, int a)
{
	for (int i = x; i <= N; i += lowbit(i))
	{
		for (int j = y; j <= N; j += lowbit(j))
		{
			bit[i][j] += a;
		}
	}
}

int sum(int x, int y)
{
	int ans = 0;
	for (int i = x; i >0; i -= lowbit(i))
	{
		for (int j = y; j >0; j -= lowbit(j))
		{
			ans += bit[i][j];
		}
	}
	rt ans;
}

int main()
{
	//fr;
	detie;
	scanf("%d", &X);
	while (X--)
	{

		char c[10];
		int x1, x2, y1, y2;
		memset(bit, 0, sizeof bit);
		scanf("%d %d", &N, &T);
		while (T--)
		{
			scanf("%s", c);
			if (c[0]=='C')
			{
				scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
				add(x1, y1, 1);
				add(x1, y2 + 1, 1);
				add(x2 + 1, y1, 1);
				add(x2 + 1, y2 + 1, 1);
			}
			else
			{
				scanf("%d %d", &x1, &y1);
				printf("%d\n", sum(x1, y1)&1);
			}
		}
		printf("\n");
	}
	rt 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/veget_chicken/article/details/52369229
文章标签: 树状数组
个人分类: 树状数组
上一篇Ultra-QuickSort
下一篇Frequent values
想对作者说点什么? 我来说一句

matrix calculus

2010年02月16日 46KB 下载

Android画图之Matrix剖析

2011年08月04日 66KB 下载

C++ 矩阵简单的计算器

2012年05月12日 8KB 下载

Matrix Calculation

2011年01月21日 199KB 下载

没有更多推荐了,返回首页

关闭
关闭