数理逻辑2 -- 量化理论6

我们再看一些好用的规则,省去许多证明的麻烦。

命题2.26:如果 C 是好式子B的一个子wf, B 是用好式子 D 替换C 0 次)而产生,并且 C 或者D中的所有自由变量,同时又是 B 的受限变量的,都在以下列表y1,y2,...,yk中,那么
(a) [(y1)...(yk)(CD)](BB) (等价定理)
(b) 若 CD ,则 BB (替换定理)
(c) 若 CD ,并且 B ,则 B

证明:(b)和(c)可直接由(a)导出,所以(b)(c)的证明过程就不写了。

(a)的证明采用基于 B 的连接符和量词个数的归纳法。先考虑两种特殊情况,第一,D C 的替换次数为0,这时B还是 B ,由于BB是永真式,所以不难得出性质成立。第二,如果 C 就是B,那么 B 就成了 D ,那么就成了要证明[(y1)...(yk)(BD)](BD),这由前面的定理2.25d部分得证。因此,如果不是上述两种替换方式,我们称之为“合适替换”。

B 中包含n个连接符与全称量词,
1. n=1 时, B 是原子wf,任何替换都不是合适替换,性质成立。
2. n>1时,假设性质对 n1 成立,有三种情况:
2.1 B ¬G的形式。根据归纳假设有 [(y1)...(yk)(CD)](GG) 。然后又因为 (C(AB))(C(¬A¬B)) 是永真式,所以找一个“合适”的该永真式的特例,然后利用MP,就可以得出 [(y1)...(yk)(CD)](¬G¬G) ,所以性质成立。
2.2 B GH的形式。根据归纳假设有 [(y1)...(yk)(CD)](GG) [(y1)...(yk)(CD)](HH) 。同样的,找一个如下永真式的特例即可

(A(BC))(A(DE))(A[(BD)(CE)])

2.3 B (x)G的形式,则 B 写作 (x)G 。这里要用一个引理。

引理2.27: (x)(BD)((x)B(x)D)
证明不难,这里省略。

根据归纳假设有 [(y1)...(yk)](CD)(GG) 。这里关键是命题的条件,也即变量 x 肯定不是[(y1)...(yk)](CD)的自由变量,因为是的话,又因为 x B的受限变量,所以根据命题条件, x 必定是y1,y2,...,yk中的一个,那这样 x 又不是[(y1)...(yk)](CD)的自由变量了。

既然 x 不是自由变量,就可用(A5):
(x)([(y1)...(yk)](CD)(GG))([(y1)...(yk)](CD)(x)(GG))

所以结合归纳假设和MP,可得 [(y1)...(yk)](CD)(x)(GG) 。又根据引理2.27和传递规则,就可得到 [(y1)...(yk)](CD)((x)G(x)G) ,即性质成立。
证毕

还有几个好用的规则,其中两个很好证明,最后一个复杂点。

命题2.28(特例规则,Particularization Rule A4):如果 t B(x)中对 x 自由,那么(x)B(x)B(t)

命题2.29(存在规则,Existential Rule E4):项 t B(x,t)中对 x 自由,B(t,t) t 取代B(x,t)中所有自由出现的 x 所产生。那么B(t,t)(x)B(x,t)

在常用的数学证明中,经常会“直觉”地使用这样的规则:如果存在 x ,使得B(x)成立,那么去一个特殊的常量 d ,则B(d)也成立。这样的规则一般称为”选择规则”,英文叫Rule of Choice。选择规则翻译成一阶逻辑语言就是:如果证明过程中出现了 (x)B(x) ,那么下一步就可得到 B(d) ,其中 d 是某个常量,接着B(d)也作为一个wf,继续出现在后续的证明中。

有了选择规则后,很多证明就可以简化,我们只需证明选择规则的可行性即可。

*定义2.30(选择规则,Rule of Choice):我们说 ΓCB ,当且仅当,证明序列 D1,D2,...,Dn 满足以下四个条件:
1. 对于 i<n , Di 要么是公理,要么属于 Γ ,要么由MP和Gen导出,要么之前的wf中存在 (x)D(x) 使得 Di D(d) ,其中 d 是一个新的常量。
2. 所有涉及到步骤1中新引入的常量的wf,都可继续用在后续的逻辑公理中。
3. 用Gen时的变量不能是诸如(x)D(x)里的自由变量,其中 (x)D(x) 是用选择规则时依赖的某个wf。
4. B 不能包含选择规则时引入的常量。


上述定义最关键是第3点,即后续证明过程中使用D(d)时,如有Gen规则,千万不要使用 D(d) 中的自由变量,也即 (x)D(x) 中的自由变量。

接下来就是证明选择规则的可行性了。
命题2.31:如果 ΓCB ,那么 ΓB
证明:要先证一个引理,它在原书中是道习题。
引理2.32:如果 x B中没有自由出现,那么 ((x)DB)(x)(DB)
引理2.32证明:
(a) 先证 ((x)DB)(x)(DB)
1. (x)DB ,假设
2. ¬B ,假设
3. ¬B(x)¬D ,由1和条件逆否规则
4. (x)¬D ,由2、3和MP
5. ¬D ,由4、公理A4和MP
6. (x)DB,¬B¬D ,由1-5
7. (x)DB(¬B¬D) ,由6和演绎定理
8. (x)DB(DB) ,由7和条件逆否规则
9. (x)DB(x)(DB) ,由8和Gen
10. ((x)DB)(x)(DB) ,由9和演绎定理

(b)再证 (x)(DB)((x)DB)
1. (x)(DB) ,假设
2. ¬B ,假设
3. DB ,由1、A4和MP
4. ¬B¬D ,由3和条件逆否规则
5. ¬D ,由2、4和MP
6. (x)¬D ,由5和Gen,
7. (x)(DB)(¬B(x)¬D) ,由6和演绎定理, x 不是B的自由变量
8. (x)(DB)((x)DB) ,由7和条件逆否规则
引理2.32证毕

继续命题2.31的证明。因为 ΓCB ,所以根据定义2.30,证明序列中用到了选择规则,记依赖选择规则的wf按先后顺序为 (y1)D1(y1),(y2)D2(y2),...,(yk)Dk(yk) ,记对应用到的新常量为 d1,d2,...,dk 。不难得出, Γ,D1(d1),...,Dk(dk)B

定义2.30中的第3点保证了在过程中使用Gen时,不会用到 D1(d1),...,Dk(dk) 中的自由变量,所以演绎定理在此适用,得出 Γ,D1(d1),...,Dk1(dk1)Dk(dk)B

接着,我们用一个在 Γ,D1(d1),...,Dk1(dk1)Dk(dk)B 证明序列中从未出现的变量 z 来取代所有出现的dk,得到 Γ,D1(d1),...,Dk1(dk1)Dk(z)B (这个是成立的,不难证明)。然后用Gen,得到 Γ,D1(d1),...,Dk1(dk1)(z)(Dk(z)B)

因为 z 并不是B的自由变量(根据定义2.30的第4点, B 中不包含dk,所以也不可能包含 z ),所以可以应用引理2.32,继续得出Γ,D1(d1),...,Dk1(dk1)(z)Dk(z)B。由于 z (z)Dk(z)中不是自由变量,所以我们可用 yk 替代,得到 Γ,D1(d1),...,Dk1(dk1)(yk)Dk(yk)B (真要严格证明也不难)。

又因为 Γ,D1(d1),...,Dk1(dk1)(yk)Dk(yk) ,所以应用MP可得出 Γ,D1(d1),...,Dk1(dk1)B 。接着用同样的方法依次把 Dk1(dk1),...,D1(d1) 消掉,最终得到 ΓB
证毕

这章内容巨长无比,十分难啃。后续还有:

  • 完备性定理(哥德尔在1930年首次给出证明,膜拜大神)
  • 带等式的一阶逻辑理论
  • 新函数符号与常量符号
  • 前束范式,Prenex Normal Forms(完全不知道是啥)
  • 同构、理论类别
  • 泛化一阶理论(符号集不再是与自然数同基的“可数”集,可以是任意集合)
  • 初级等价(完全不知道是啥)
  • 超能力、非标准分析(要上天)
  • 语义树(能看懂名字,可能跟编程语言、自然语言里的东西差不多)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值