集合论是所有数学的基础,很多数学概念都可用集合来表示。比如,我们可以用集合论建立自然数系统,也可建立函数。
从朴素的集合论角度来看,所谓一个集合,就是“一堆元素”。但罗素悖论指出,我们不能那样定义集合,否则就会产生罗素悖论。即是说,我们是否允许一个集合包含自身作为元素?如果允许,就会导致罗素悖论,即我们定义一个集合A,它的元素是所有哪些不属于自己的集合,那么试问是否A∈A?如果是,那么根据定义,A就不是A的元素。如果不是,还是根据定义,A就应该是A的元素。
公理化集合论就尝试建立一套“严谨”的集合论,它的主要作法是“规定”哪些东西才能算集合,哪些东西虽然“聚合了一堆东西,但却不是集合”。公理化集合论中最著名的当属ZFC,但是教材从一阶逻辑的角度建立了另一套公理化集合论。这些理论被证明是等价的,所以讨论其中一个,也可以洞察集合论的一些关键问题。
教材里建立的集合论称为NBG,作者说是为了纪念“Newmann-Bernays-Godel”。NBG是一阶逻辑理论,它的一阶语言里没有函数符号,也没有常量符号(当然,后面引用了一个常量符号,表示“空集”)。它只有一个谓词符号A22,这里不用A21是因为这个谓词通常用来表示=。A22就是所谓的“属于”,因此我们把A22(X,Y)简写成X∈Y,把¬A22(X,Y)简写成X∉Y。
在NBG中,变量符号用大写英文字母表示,例如X1,X2,Y1,等等,小写英文字母另有所用,后面再介绍。这里的变量符号可以赋给它们意义,即称为“类(class)”,然后满足某个好式子的类,才会被称为“集合(set)”。
接下来,我们定义几个常用的集合论符号。
定义4.1.1:
a. X=Y是(∀Z)(Z∈X⇔Z∈Y)的缩写
b. X⊆Y是(∀Z)(Z∈X⇒Z∈Y)的缩写
c. X⊂Y是X⊆Y∧X≠Y的缩写
我们很容易就能证明以下命题。
命题4.1:
a. ⊢X=Y⇔(X⊆Y∧Y⊆X)
b. ⊢X=X
c. ⊢X=Y⇒Y=X
d. ⊢X=Y⇒(Y=Z⇒X=Z)
证明:
a. 证