数理逻辑4 -- 公理化集合论17

本文深入探讨了数理逻辑中的选择公理及其加强版UCF,以及正则公理。证明了正则公理可以从基础公理推导出,反之亦然。此外,还讨论了正则公理如何排除有限的∈-循环,并介绍了超序归纳函数Ψ的相关定理。
摘要由CSDN通过智能技术生成

继续选择公理的讨论。

命题4.43:以下好式子是选择公理AC的推论
a. 任意无限集都有可列子集。

Inf(x)(y)(yxDen(y)) I n f ( x ) ⇒ ( ∃ y ) ( y ⊆ x ∧ D e n ( y ) )

b. 无限集是Dedekind无限。
Inf(x)DedInf(x) I n f ( x ) ⇒ D e d I n f ( x )

c. 若 x x 可列,并且 x 中的成员都是可列集,那么 x ⋃ x 可列,即“可数集合的可数并也可数”。
Den(x)(y)(yxDen(y))Den(x) D e n ( x ) ∧ ( ∀ y ) ( y ⊆ x ⇒ D e n ( y ) ) ⇒ D e n ( ⋃ x )

证明:假设选择公理AC成立,
a. 根据引理4.16.2a, x x 与某个序数 α 等势。由于 x x 是无限集,所以 α ω ,所以 ω ω α α 的某个子集等势,进而与某个 x x 的子集等势。

b. 根据引理4.13.2c,一个集合是Dedekind无限,当且仅当,它有可列子集。所以,由a的结果可知,若 x x 无限,则 x 有可列子集,进而 x x 是Dedekind无限。

c. 先证 xω ⋃ x ⪯ ω 。注意 ωω×ω ω ≅ ω × ω ,所以我们证 xω×ω ⋃ x ⪯ ω × ω 。这里就要构造一个函数 F F ,对于 y x Fy=<u,v> F ′ y =< u , v > ,其中 u,vω u , v ∈ ω 。它的构造思路很简单:因为 xω x ≅ ω ,记其中一个一一映射函数为 h h 。若 y x ,那么存在某些 zx z ∈ x ,使得 yz y ∈ z 。这些 z z 通过函数 h 映射到 ω ω 的某个子集,这个子集有最小值 n n ,所以 F y =< u , v > u u 就取这个 n (到现在为止还没用AC)。接着,因为任意这些 z z 都可列,即 z ω ,这时就要通过选择公理AC来选出其中一个一一映射函数 g g (具体构造过程不写了,还是老套路,对于任意 u x ,构造所有一一映射函数 uω u → ω 的集合,然后从这些函数里选出一个。注意,这里要用AC是因为要确保 y1,y2z y 1 , y 2 ∈ z ,用到的一一映射函数是同一个函数。没有AC的话,只能 zx(g)zgω z ∈ x ⇒ ( ∃ g ) z ≅ g ω ,对于 y1,y2z y 1 , y 2 ∈ z ,并不能保证 (g) ( ∃ g ) 的这个 g g 是同一个函数),然后 F y =< u , v > 中的 v v 就是 g v 。因此, F F 就是以 x 为定义域,以 ω×ω ω × ω 的某个子集为值域的一一函数,所以 xω×ω ⋃ x ⪯ ω × ω

反过来,因为存在某个 vxvω v ∈ x ∧ v ≅ ω ,所以 vxvω v ⊆ ⋃ x ∧ v ≅ ω ,进而 ωx ω ⪯ ⋃ x 。根据Bernstein定理,就有 xω ⋃ x ≅ ω

选择公理AC有个更强的版本,叫做UCF,Universal Choice Function:

(X)(Fnc(X)(u)(uXuu)) ( ∃ X ) ( F n c ( X ) ∧ ( ∀ u ) ( u ≠ ∅ ⇒ X ′ u ∈ u ) )

UCF可以得出AC,但如果NBG是一致的,则NGB+AC得不出UCF。

正则公理 Regularity Axiom (Reg)

Reg: (X)(X(y)(yXX=)) ( ∀ X ) ( X ≠ ∅ ⇒ ( ∃ y ) ( y ∈ X ∩ X = ∅ ) ) ,任意非空类 X X 都有与自己互斥的成员。

正则公理是很基本的准则,也产生了一些争论。

命题4.44:
a. 正则公理可导出基础公理(Fundierungsaxiom),

¬ ( ( f ) [ F n c ( f ) D ( f ) = ω ( u ) ( u ω f ( u ) f u ) ] )
,即没有无限的反包含关系。

b. 假设AC,那么基础公理可导出正则公理。

c. 正则公理可以导出,不存在有限 ∈ − 循环,即对任意非空有限序数 α α ,不存在函数 f f ,使得 f f 1 f α f

证明:
a. 假设基础公理不成立,即存在那样的一个函数 f f 。记 z = f ω ,由正则公理Reg可知,存在某个 yz y ∈ z yz= y ∩ z = ∅ 。接着,既然

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值