继续选择公理的讨论。
命题4.43:以下好式子是选择公理AC的推论
a. 任意无限集都有可列子集。
b. 无限集是Dedekind无限。
c. 若 x x 可列,并且 中的成员都是可列集,那么 ⋃x ⋃ x 可列,即“可数集合的可数并也可数”。
证明:假设选择公理AC成立,
a. 根据引理4.16.2a, x x 与某个序数
等势。由于 x x 是无限集,所以
,所以 ω ω 与 α α 的某个子集等势,进而与某个 x x 的子集等势。
b. 根据引理4.13.2c,一个集合是Dedekind无限,当且仅当,它有可列子集。所以,由a的结果可知,若 x x 无限,则 有可列子集,进而 x x 是Dedekind无限。
c. 先证 ⋃x⪯ω ⋃ x ⪯ ω 。注意 ω≅ω×ω ω ≅ ω × ω ,所以我们证 ⋃x⪯ω×ω ⋃ x ⪯ ω × ω 。这里就要构造一个函数 F F ,对于 , F′y=<u,v> F ′ y =< u , v > ,其中 u,v∈ω u , v ∈ ω 。它的构造思路很简单:因为 x≅ω x ≅ ω ,记其中一个一一映射函数为 h h 。若 ,那么存在某些 z∈x z ∈ x ,使得 y∈z y ∈ z 。这些 z z 通过函数 映射到 ω ω 的某个子集,这个子集有最小值 n n ,所以 的 u u 就取这个 (到现在为止还没用AC)。接着,因为任意这些 z z 都可列,即 ,这时就要通过选择公理AC来选出其中一个一一映射函数 g g (具体构造过程不写了,还是老套路,对于任意 ,构造所有一一映射函数 u→ω u → ω 的集合,然后从这些函数里选出一个。注意,这里要用AC是因为要确保 y1,y2∈z y 1 , y 2 ∈ z ,用到的一一映射函数是同一个函数。没有AC的话,只能 z∈x⇒(∃g)z≅gω z ∈ x ⇒ ( ∃ g ) z ≅ g ω ,对于 y1,y2∈z y 1 , y 2 ∈ z ,并不能保证 (∃g) ( ∃ g ) 的这个 g g 是同一个函数),然后 中的 v v 就是 。因此, F F 就是以 为定义域,以 ω×ω ω × ω 的某个子集为值域的一一函数,所以 ⋃x⪯ω×ω ⋃ x ⪯ ω × ω 。
反过来,因为存在某个 v∈x∧v≅ω v ∈ x ∧ v ≅ ω ,所以 v⊆⋃x∧v≅ω v ⊆ ⋃ x ∧ v ≅ ω ,进而 ω⪯⋃x ω ⪯ ⋃ x 。根据Bernstein定理,就有 ⋃x≅ω ⋃ x ≅ ω 。 □ ◻
选择公理AC有个更强的版本,叫做UCF,Universal Choice Function:
UCF可以得出AC,但如果NBG是一致的,则NGB+AC得不出UCF。
正则公理 Regularity Axiom (Reg)
Reg: (∀X)(X≠∅⇒(∃y)(y∈X∩X=∅)) ( ∀ X ) ( X ≠ ∅ ⇒ ( ∃ y ) ( y ∈ X ∩ X = ∅ ) ) ,任意非空类 X X 都有与自己互斥的成员。
正则公理是很基本的准则,也产生了一些争论。
命题4.44:
a. 正则公理可导出基础公理(Fundierungsaxiom),
b. 假设AC,那么基础公理可导出正则公理。
c. 正则公理可以导出,不存在有限 ∈− ∈ − 循环,即对任意非空有限序数 α α ,不存在函数 f f ,使得
证明:
a. 假设基础公理不成立,即存在那样的一个函数 f f 。记
,由正则公理Reg可知,存在某个 y∈z y ∈ z 且 y∩z=∅ y ∩ z = ∅ 。接着,既然