数理逻辑4 -- 公理化集合论18

上节构造了类 H H ,以下命题给出了正则公理的等价形式。

命题4.45:正则公理等价于 V = H

证明:
a. 假设 V=H V = H 。考虑 X X ≠ ∅ ,令 α α X X 中成员的排位的最小序数,令 b 满足 α=ρb α = ρ ′ b 。那么, bX= b ∩ X = ∅ 。否则的话,若 ubX u ∈ b ∩ X ,由引理4.17.1g, ρu<ρb ρ ′ u < ∘ ρ ′ b ,与 α α 的最小性产生矛盾。

b. 假设正则公理Reg。假设 VH V ≠ H ,那么 VH V − H ≠ ∅ 。根据Reg,存在 yVH y ∈ V − H ,使得 yVH= y ∩ V − H = ∅ 。因此,若 uy u ∈ y ,则 uVH u ∉ V − H ,所以 uH u ∈ H (注意,显然 HV H ⊆ V ,因为 H H 的成员肯定是集合,记得 M ( X ) (Y)(XY) ( ∃ Y ) ( X ∈ Y ) 的缩写)。既然 uyuH u ∈ y ⇒ u ∈ H ,所以 yH y ⊆ H 。根据引理4.17.1h,可得 yH y ∈ H ,与 yVH y ∈ V − H 产生矛盾。

命题4.45很厉害,它等于在说,增加了正则公理之后,所有的集合都是 H H 的成员,也就是任意一个集合,都可由 Ψ 函数构造而成,也即由空集、幂集、并集操作得出。

大神们已经证明,选择公理AC独立于NBG+(Reg),也即你用NBG+(Reg)既证不出AC,也证不出 ¬ ¬ AC。哥德尔弄完他的不完备定理之后,花了几年时间在搞康托尔的连续统假设,之后二战爆发他去了美国,跟爱因斯坦成了好基友,短暂搞了一下相对论,之后就彻底转向哲学。王浩说,哥德尔的根本志向在于搞哲学,数学和物理只是他研究哲学的手段和工具,当哥德尔发现数学之路无法通向哲学的时候,他就放弃了搞数学的兴趣。

哥德尔证明了NBG+(Reg)+(AC)无法证伪连续统假设。康托尔已经证明了整数集的势小于实数集的势,他的连续统假设是说,没有集合的势介于整数与实数。哥德尔研究了一个更强的连续统假设版本,称为“一般性连续统假设”,英文是General Continuum Hypothesis,简写为GCH,

(x)(Inf(x)¬(y)(xyyP(x))) ( ∀ x ) ( I n f ( x ) ⇒ ¬ ( ∃ y ) ( x ⪯ y ∧ y ⪯ P ( x ) ) )

,也就是,对于任意无限集 x x ,没有集合的势介于 x P(x) P ( x ) 之间。

哥德尔的证明结果,在NBG理论下可以看作是:如果NGB是一致的,那么NBG+(Reg)+(AC)+(GCH)也是一致的。因此,就不可能推导得出

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值