1253. Convert a Number to Hexadecimal

描述

Given an integer, write an algorithm to convert it to hexadecimal. For negative integer, two’s complement method is used.

1.All letters in hexadecimal (a-f) must be in lowercase.
2.The hexadecimal string must not contain extra leading 0s. If the number is zero, it is represented by a single zero character '0'; otherwise, the first character in the hexadecimal string will not be the zero character.
3.The given number is guaranteed to fit within the range of a 32-bit signed integer.
4.You must not use any method provided by the library which converts/formats the number to hex directly.

您在真实的面试中是否遇到过这个题?   是

样例

Example 1:

Input:
26

Output:
"1a"
Example 2:

Input:
-1

Output:
"ffffffff"

正常处理负数的办法:使用补码即:UINT_MAX+num+1

然后不停的求除以16的余数即可

但这种方法有点复杂,最好的办法是使用二进制数,每次取四个换成16进制,这样就避免了计算负数

class Solution {
public:
    /**
     * @param num: an integer
     * @return: convert the integer to hexadecimal
     */
    string toHex(int num) {
        // Write your code here
        string result="";
        for(int i=0;num&&i<8;++i){
            int tmp=num&0xf;
            if(tmp>=10) result=char('a'+tmp-10)+result;
            else result=char('0'+tmp)+result;
            num>>=4;
        }
        return result.empty()?"0":result;
    }
};

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值