
YOLO
文章平均质量分 69
介绍YOLO系列论文及其衍生算法
ViatorSun
深度学习算法工程师,Github开源世界贡献者,专注于『计算机视觉、多模态大模型』领域
展开
-
darknet框架 训练分类模型及测试图片
darknet 框架的Yolo模型大概已经没什么公司使用了,对于老项目的维护可能新手需要了解下,然而 darknet架构并不十分友好,新手入手门槛比较高,特别是做分类任务时,简直了!!!博主也是走了不少弯路,再次整理记录下,便于需要的小伙伴查看,同时也供自己日后学习。原创 2023-10-24 17:10:28 · 474 阅读 · 0 评论 -
「解析」YOLOv5 classify分类模板
学习深度学习有些时间了,相信很多小伙伴都已经接触 图像分类、目标检测甚至图像分割(语义分割)等算法了,相信大部分小伙伴都是从分类入门,接触各式各样的 Backbone算法开启自己的炼丹之路。原创 2023-09-03 22:14:27 · 4025 阅读 · 0 评论 -
「解析」FocalLoss 解决数据不平衡问题
FocalLoss 的出现,主要是为了解决 anchor-based (one-stage) 目标检测网络的分类问题。后面实例分割也常使用。正常的 的标签,是用一个K长度的向量作为标签,用one-hot(或者+smooth,这里先不考虑)来进行编码,最终的标签是一个形如[1,…, 0, …, 0]这样的。那么如果想要将背景分离出,自然可以想到增加一个1维,如果目标检测任务有K类,这里只要用K+1维来表示分类,其中1维代表无目标即可。对于分类任务而言,最后一般使用 softmax 来归一,使得所有类别的输出原创 2022-07-06 20:12:40 · 1635 阅读 · 1 评论 -
「解析」FPN: Feature Pyramid Network 及优化
图像金字塔是常用的特征层,在目标检测中,因为需要检测出大小不同的物体,因此需要关注不同尺寸的特征层,在此记录下图像金字塔的获取,以及优化方法论文:feature pyramid networks for object detection论文链接:https://arxiv.org/abs/1612.03144首先在backbone的过程中,将所需的 feature map提取保存下来以便后续需要。在此以 resnet为例,保存维度如下一般情况下,提取出图像金字塔后,还是需要稍微处理下,如下,低阶特征由于原创 2022-07-09 22:52:24 · 726 阅读 · 0 评论 -
「解析」YOLOv4模型小结
其中M表示高置信度候选框,Bi 就是遍历各个框跟置信度高的重合情况。之前使用NMS来决定是否删除一个框,现在改用DIoU-NMS。网络细节部分加入了很多改进,引入了各种能让特征提取更好的方法。不仅考虑了IoU的值,还考虑了两个Box中心点之间的距离。增加稍许推断代价,但可以提高模型精度的方法。神经网络最大的缺点:过拟合,别让它太自信。注意力机制,网格细节设计,特征金字塔等,引入了近年部分优秀的创新。原创 2023-06-20 23:54:54 · 323 阅读 · 0 评论 -
「解析」SPP 特征金字塔 系列
对于一个CNN模型,可以将其分为两个部分:前面包含卷积层、激活函数层、池化层的特征提取网络,下称CNN_Pre,后面的全连接网络,下称CNN_Post。许多CNN模型都对输入的图片大小有要求,实际上CNN_Pre对输入的图片没有要求,可以简单认为其将图片缩小了固定的倍数,而CNN_Post对输入的维度有要求。SPP:空间金字塔池化,无论CNN_Pre输出的feature maps尺寸是怎样,都能输出固定的维度传给CNN_Post。SPP的本质就是多层maxpool,只不过为了对于不同尺寸大小 a。原创 2023-04-23 23:37:48 · 585 阅读 · 0 评论 -
「解析」YOLOv3 - NMS算法
YOLO系列的NMS算法大致相同,本文介绍的 NMS算法 是基于 YOLOv3 实现的,根据YOLOv3架构图所示,test过程将所有的预测框拼接成一个张量进行输出预测,Prediction:[batch, num_anchor, 85],其中 85 的构成enumerate() 是python的内置函数,用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。返回 enumerate(枚举对象) 下标号 、成员。原创 2023-04-20 01:25:18 · 780 阅读 · 0 评论 -
「解析」Pytorch 自动计算 batchsize
日志是一个十分必要的操作,有助于后期分析实验结果,特别是在多台不同环境下训练,为了区分,还是十分有必要记录相关平台信息的,比如 hostname,Python版本信息,Pytorch版本信息等!查看显卡信息 首先需要获取显卡信息,查看显存 ==**File path:**== yolov5-7.0/utils/autobatch.py原创 2023-04-13 18:10:01 · 1652 阅读 · 0 评论 -
「解析」Pytorch 自动选择设备训练
在使用 Pytorch 进行训练模型的时候,常常需要配置 CPU、GPU训练,甚至多卡用户还需要管理GPU。除此之外,用户虽然配置好了显卡配置,但是还需要检测下配置,以防报错,因此需要还是需要检测下。函数进行判断,首先获取 时间信息 和 torch的版本信息,然后首先判断是否是 cpu设备,然后再判断 GPU设备。如果是多卡用户,记得 batch_size 与 cuda数量匹配。原创 2023-06-07 18:00:50 · 543 阅读 · 5 评论