
Segmentation
文章平均质量分 73
语义分割(semantic segmentation):对图像中逐像素进行分类。
实例分割(instance segmentation):对图像中的object进行检测,并对检测到的object进行分割。
全景分割(panoptic segmentation):对图像中的所有物体进行描述。
ViatorSun
深度学习算法工程师,Github开源世界贡献者,专注于『计算机视觉、多模态大模型』领域
展开
-
「解析」COCO 数据读取与模型结果解析
最近在学习实例分割,使用的 COCO数据集训练,但是在Github上看到的代码,问题太多了,跑出来的结果简直惨不忍睹,其中模型存在一些问题,但是这次也让我意识到了 辅助代码的重要性,特别是COCO数据集的读取与测试时的解析,真的是一点都不容出错,否则,你会怀疑人生的!......原创 2022-08-16 23:08:27 · 1785 阅读 · 0 评论 -
「解析」图像分割-mask的读取与保存
Pillow 图像常见属性im.width # 宽度im.height # 高度im.size # 尺寸(宽和高),是一个元组im.mode # 模式,如RGB, RGBA, P, L等im.format # 格式,如.jpg .png等im.readonly # 是否只读,值为0或1im.category # 类别im.info # 图片的信息,是一个字典三、图片的模式1位像素的范围是0-1,0表示黑1表示白,中间表示灰。8位像素的范围是原创 2022-06-01 23:45:01 · 2577 阅读 · 0 评论 -
「解析」DeepLabv3+ 模型搭建
经过最近一段时间的学习DeepLabv3+ 也基本吃透,在此整理成博客,供自己日后查看,同时也分享给各位小伙伴,不足之处还望大家多多指点完整版代码地址:https://github.com/ViatorSun/DeepLabV3Plus-Pytorch文章目录1、模型分析优化器损失函数性能指标2、构建 DeepLab 模型IntermediateLayerGetterDeepLabHeadV3PlusBuildSegmentationModel1、模型分析经过近两年的学习,特别是对于相对简单的.原创 2022-04-19 16:03:42 · 4202 阅读 · 8 评论 -
「解析」语义分割性能指标 附代码
图像分割与其他任务不同,其性能指标采用的混淆矩阵,然后在混淆矩阵的基础上再计算各项性能指标,其比直接计算 像素级的IoU要方便且更加高效,完整版的代码在博客结尾。添加 掩码mask 的目的是为了保证 标签都为非负数 且 在类别之内,预防其他情况,如果有个例不在此范围,则输出 False;则在label_true[mask] 时将对应位置 置0⃣️,label_pred[mask] 同理;astype(int) 将label_true 转换成整数,则小数部分将会被截断。注意小数点不是四舍五入,而是直接干掉;原创 2022-04-15 21:35:00 · 4643 阅读 · 1 评论 -
Pytorch 获取中间 FeatureMap 方法
在学习 DeepLabV3+ 的时候发现需要用到 不同层的 FeatureMap,因此特别关注了下相关代码;在还没完全弄明白的时候,又需要复现 TSGB论文 时,其中也用到了不同层的 FeatureMap,因此认真的 Debug 了这段代码,核心代码如下:from collections import OrderedDict import torchfrom torch import nn class IntermediateLayerGetter(nn.ModuleDict):原创 2022-04-04 23:36:17 · 1888 阅读 · 0 评论