7-40 最短工期 (25 分)

该博客介绍了如何通过拓扑排序来判断项目任务的依赖关系是否合理,并在合理的情况下计算出项目的最早完工时间。文章提供了一个C++代码示例,展示了如何处理输入的任务关系并进行计算。拓扑排序能够有效地检查有向图是否存在环,并在无环情况下更新任务的最短完成时间。
摘要由CSDN通过智能技术生成

一个项目由若干个任务组成,任务之间有先后依赖顺序。项目经理需要设置一系列里程碑,在每个里程碑节点处检查任务的完成情况,并启动后续的任务。现给定一个项目中各个任务之间的关系,请你计算出这个项目的最早完工时间。

输入格式:

首先第一行给出两个正整数:项目里程碑的数量 N(≤100)和任务总数 M。这里的里程碑从 0 到 N−1 编号。随后 M 行,每行给出一项任务的描述,格式为“任务起始里程碑 任务结束里程碑 工作时长”,三个数字均为非负整数,以空格分隔。

输出格式:

如果整个项目的安排是合理可行的,在一行中输出最早完工时间;否则输出"Impossible"。

输入样例 1:

9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4

输出样例 1:

18

输入样例 2:

4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5

输出样例 2:

Impossible

题目分析:项目安排是否合理就是判断有向图是否有环,用拓扑排序可以实现判断。判断的同时更新任务花费时间。

题目解答:

#include<bits/stdc++.h>
using namespace std;
const int N=105;
vector<pair<int, int> > g[N];
int k=0,in[N],fee[N],ans[N];
queue<int> q;
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=0;i<m;i++){
        int u,v,w;
        cin>>u>>v>>w;
        in[v]++;
        g[u].push_back({v,w});
    }
    for(int i=0;i<n;i++){
        if(!in[i]) q.push(i);
    }
    while(!q.empty()){
        int x=q.front();
        q.pop();
        ans[k++]=x;
        for(auto t:g[x]){
            int l=t.first;
            int r=t.second;
            if(--in[l]==0){
                q.push(l);
            }
            if(fee[l]<fee[x]+r){
                fee[l]=fee[x]+r;
            }
        }
    }
    if(k==n){
        int maxn=0;
        for(int i=0;i<n;i++){
            if(fee[i]>maxn){
                maxn=fee[i];
            }
        }
        cout<<maxn<<endl;
    }else 
    cout<<"Impossible"<<endl;
    return 0;
}

参考博客:PTA 最短工期 (25 分)_Bob__Huang的博客-CSDN博客_最短工期pta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞飞鱼_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值