一个项目由若干个任务组成,任务之间有先后依赖顺序。项目经理需要设置一系列里程碑,在每个里程碑节点处检查任务的完成情况,并启动后续的任务。现给定一个项目中各个任务之间的关系,请你计算出这个项目的最早完工时间。
输入格式:
首先第一行给出两个正整数:项目里程碑的数量 N(≤100)和任务总数 M。这里的里程碑从 0 到 N−1 编号。随后 M 行,每行给出一项任务的描述,格式为“任务起始里程碑 任务结束里程碑 工作时长”,三个数字均为非负整数,以空格分隔。
输出格式:
如果整个项目的安排是合理可行的,在一行中输出最早完工时间;否则输出"Impossible"。
输入样例 1:
9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4
输出样例 1:
18
输入样例 2:
4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5
输出样例 2:
Impossible
题目分析:项目安排是否合理就是判断有向图是否有环,用拓扑排序可以实现判断。判断的同时更新任务花费时间。
题目解答:
#include<bits/stdc++.h>
using namespace std;
const int N=105;
vector<pair<int, int> > g[N];
int k=0,in[N],fee[N],ans[N];
queue<int> q;
int main(){
int n,m;
cin>>n>>m;
for(int i=0;i<m;i++){
int u,v,w;
cin>>u>>v>>w;
in[v]++;
g[u].push_back({v,w});
}
for(int i=0;i<n;i++){
if(!in[i]) q.push(i);
}
while(!q.empty()){
int x=q.front();
q.pop();
ans[k++]=x;
for(auto t:g[x]){
int l=t.first;
int r=t.second;
if(--in[l]==0){
q.push(l);
}
if(fee[l]<fee[x]+r){
fee[l]=fee[x]+r;
}
}
}
if(k==n){
int maxn=0;
for(int i=0;i<n;i++){
if(fee[i]>maxn){
maxn=fee[i];
}
}
cout<<maxn<<endl;
}else
cout<<"Impossible"<<endl;
return 0;
}