Hadoop学习笔记(六)(Spark + Flink + Beam)

spark:计算框架(速度,易用,通用性)
                   Mapreduce是进程级别的,Spark是线程级别的

Spark生态系统:DBAS(Berkeley Data Analytics Stack)
Mesos,HDFS,Tachyon(基于内存的文件系统),Spark(核心)
自框架:Spark Streaming,GraphX,MLib,SparkSQL
外部交互:Hive,Storm,MPI

  • spark可用语言:python,scala,java,R
  • spak运行模式:standalone,Yarn,Mesos,local

-----------------------------------------------------------

scala安装
1)tar
2)vi ~/.bash_profile
    export SCALA_HOME=/home/hadoop/app/scala-2.11.8
    export PATH=$SCALA_HOME/bin:$PATH
3)source
4)scala启动

Spark编译过程..
Spark 2.1.0,source code 下载
cd bin 目录:spark启动:./spark-shell --master local[2]

spark实现wc:

val file = sc.textFile("file:///root/hello.txt")//a.collect输出
val a = file.flatMap(line => line.split(" "))
val b = a.map(word => (word,1))
//Array((hadoop,1), (welcome,1), (hadoop,1), (hdfs,1), (mapreduce,1), (hadoop,1), (hdfs,1))

val c = b.reduceByKey(_ + _)
//Array((mapreduce,1), (welcome,1), (hadoop,3), (hdfs,2))
sc.textFile("file:///home/hadoop/data/hello.txt").flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_ + _).collect

监控页面:localhost:4040

-----------------------------------------------------------

Flink安装、运行
启动:bin/start.local.sh
./bin/flink run ./examples/batch/WordCount.jar \
--input file:///home/hadoop/data/hello.txt --output file:///home/hadoop/tmp/flink_wc_output

查看:localhost:8081

-----------------------------------------------------------

Beam:将批处理(Spark,Flink)和流处理运行在执行引擎上

Beam运行:
1)#direct方式运行
mvn compile exec:java -Dexec.mainClass=org.apache.beam.examples.WordCount \
-Dexec.args="--inputFile=/home/hadoop/data/hello.txt --output=counts" \
-Pdirect-runner

2)#spark方式运行
mvn compile exec:java -Dexec.mainClass=org.apache.beam.examples.WordCount \
-Dexec.args="--runner=SparkRunner --inputFile=/home/hadoop/data/hello.txt --output=counts" -Pspark-runner


3)#flink方式运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值