概率神经网络

概率神经网络(PNN)是径向基神经网络的一种,广泛应用于模式分类。PNN结合了密度函数估计和贝叶斯决策理论,其判别边界在一定条件下逼近贝叶斯最佳判定面。PNN具有训练快速、非线性逼近能力强、无局部最小值问题及良好的扩充性能等特点。
摘要由CSDN通过智能技术生成
概率神经网络(Probabilistic Neural Networks, PNN)可以视为是径向基神经网络的一种,在模式分类问题中得到了广泛应用。
PNN在RBF网络的基础上,融合了密度函数估计和贝叶斯决策理论,在某些易满足的条件下,以PNN实现的判别边界渐进地逼近贝叶斯最佳判定面。
概率神经网络

概率神经网络的结构:(径向基层极为隐含层)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值