概率神经网络(PNN)

概率神经网络
一、概率神经网络简介
        注意:以下内容参考贝叶斯决策理论。


二、概率神经网路的网络结构(PNN)



总结:
        1、输入层接收样本的值,神经元个数与输入向量长度相等。
        2、隐藏层为径向基层,每个神经元对应一个中心(对应一个样本数据)。
        3、输入数据分为了i类,因为PNN就是用来分类的,就是先用样本训练网络,然后输入数据,用此网络来鉴别,是属于哪一类数据。
        4、上式Xij其实与RBF神经网络一致,就是求每个输入与样本的欧式距离,只不过此隐藏层把数据分为了i个类,并且设第i个类有j个数据。
        5、然后下图可以看出,求和层的神经元个数与数据分类的个数相等,此求和层求得上式中,每类数据的平均值。
        6、然后比较每一类平均值的大小,把此数据分类到值最大的那一类。
        7、下文中,提出在实际计算中,用来理解的公式与实际计算中公式不同,
       

      注意:上边的求和层的神经元个数与模式分类的个数相等。也就是说只有对应类别的样本( 隐藏层的神经元)连接, 不与其他无关的样本连接。

三、概率神经网络的优点




评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值