TensorFlow
TeeEye
自律即自由
展开
-
TensorFlow (一): 基本数据类型 & 操作
基本类型 & 计算过程TensorFlow 的规矩基本类型常量变量Placeholder计算过程一些简便写法图总结 TensorFlow 的规矩 在我看来, TensorFlow 程序相当于 “程序中的程序” 对于一般程序, 如下的代码简洁明了: // c code const int a = 1; const int b = 2; int c = a + b; // 代码执行完这一句时,...原创 2019-03-02 14:15:14 · 467 阅读 · 0 评论 -
TensorFlow (八): TFRecord
TFRecord前言Save代码样例Load代码样例总结 前言 TFRecord 这部分内容困扰了我好几天, 不仅是它的 API 十分晦涩且繁琐, 而且网上的大多数相关教程写的都很抽象, 在看了相关的教材之后才终于有了眉目. TFRecord 的意义在于: 如果你要训练上万张图片, 他们全部塞进内存里可能需要占用数十甚至上百 GB 的空间, 这时候传统的 feed_dict 方式就不能用了, 需要...原创 2019-03-12 22:22:52 · 236 阅读 · 0 评论 -
TensorFlow (七): Estimator
Estimator简介代码自定义 Model 简介 之前用 TensorFlow 写的神经网络都比较裸, 这次介绍的 Estimator 则是对神经网络的一种封装. 代码 import tensorflow as tf import numpy as np import tensorflow.contrib.slim as slim import mnist_loader as ml fr...原创 2019-03-11 21:57:42 · 223 阅读 · 0 评论 -
TensorFlow Memo: 两个交叉熵
API - 1: tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) 它的 labels 是类别的一维数组, 如 [0, 3, 9, 4, 8, 9] API - 2: tf.nn.softmax_cross_entropy_with_logits_v2(logits, labels) 它的 label 是 one ho...原创 2019-03-11 21:27:40 · 153 阅读 · 0 评论 -
TensorFlow (六): Flags
Flags介绍代码运行截图注意事项 介绍 TensorFlow 程序需要大量参数, 这些参数因为需要经常调试所以不适合硬编码在代码里, 一个可行的方法是作为命令行参数传入到程序中, 同时在程序中设定一个默认值, tf.flags 就是干这个的 代码 import tensorflow as tf tf.flags.DEFINE_string('s1', 's1_default', 'desc'...原创 2019-03-07 15:09:16 · 256 阅读 · 0 评论 -
TensorFlow (三):逻辑回归
逻辑回归代码结果 代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # generate data data_size = 500 x_data = np.random.rand(data_size, 2) noise = np.random.rand(data_size) nois...原创 2019-03-04 13:57:57 · 256 阅读 · 0 评论 -
TensorFlow (五): Slim
SlimSlim 简介代码对比原生 TensorFlowSlim共享参数 Slim 简介 Slim ( tf.contrib.slim ) 是一个轻量级的 TensorFlow 框架, 封装了 TensorFlow 的大量 API, 在之前学习过程中我自己明显可以感觉到 tf 的代码太啰嗦了, 想要写一个简单的 CNN 就需要写将近 50 行的辅助函数, 和 20 行的网络搭建, 之前使用 Ker...原创 2019-03-06 19:11:30 · 216 阅读 · 0 评论 -
TensorFlow (四): MNIST CNN实现
MNIST CNN实现准备工作mnist_loader.py代码效果图总结 准备工作 mnist_loader.py def load_mnist(path, kind='train'): import os import gzip import numpy as np """Load MNIST data from `path`""" labels_pa..原创 2019-03-05 22:11:15 · 217 阅读 · 0 评论 -
TensorFlow (二): 单变量线性回归
TensorFlow 单变量线性回归代码效果图 代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # generate data data_size = 100 x_data = np.random.rand(data_size) * 0.6 + 0.2 noise = np.ran...原创 2019-03-02 15:32:15 · 206 阅读 · 0 评论 -
TensorFlow 日常
TensorFlow 今日心得数值溢出相关 数值溢出相关 损失函数 (交叉熵) 公式: Loss=−1n∑(y^ilog(yi))Loss = -\frac{1}{n}\sum (\hat y_ilog(y_i))Loss=−n1∑(y^ilog(yi)) 即如果 yiy_iyi 过小, 接近于 0, 那么数值会溢出. 一般而言 yiy_iyi 是 tf.nn.softmax(logi...原创 2019-08-14 20:30:31 · 180 阅读 · 0 评论