线性代数
文章平均质量分 67
TeeEye
自律即自由
展开
-
线性代数 (一): 证明实对称矩阵特征向量正交
设矩阵AAA有特征值λ1\lambda_1λ1及特征向量u,λ2\bold u, \lambda_2u,λ2及特征向量 v\bold vv即Au=λ1uA\bold u = \lambda_1 \bold uAu=λ1uAv=λ2vA\bold v = \lambda_2\bold vAv=λ2v则vT(Au)=λ2vTu\bold v^T (A \bold u) = \lamb...原创 2019-04-04 18:57:50 · 14049 阅读 · 4 评论 -
线性代数 (二): 证明 A^T 乘以 A 为半正定矩阵
矩阵 AAA 为半正定矩阵当且仅当存在非零的 xxx, 使得xTAx>=0x^TAx >= 0xTAx>=0 恒成立设矩阵 AAA 为任意 m * n 矩阵, xxx 为任意非零 n 阶向量记v=Axv = Axv=Ax则xTATAx=(Ax)T(Ax)=vTv>=0x^TA^TAx = (Ax)^T(Ax) = v^Tv >...原创 2019-04-04 19:00:45 · 7649 阅读 · 0 评论 -
线性代数 (三): SVD数学证明与理解
SVD 数学证明与理解命题证明理解命题只讨论实矩阵.任意矩阵 Am,nA_{m,n}Am,n 可以分解为: Am,n=UΣVTA_{m,n} = U\Sigma V^TAm,n=UΣVT其中 Um,mU_{m,m}Um,m 和 Vn,nV_{n, n}Vn,n 为由 Rm\R^mRm 和 Rn\R^nRn 下的标准正交基组成, Σ\SigmaΣ 为对角矩阵证明ATAA^TA...原创 2019-04-05 09:59:37 · 607 阅读 · 0 评论