机器学习实战 1记录前一次内容(书2.1.2)

本文详细介绍了《机器学习实战》一书中2.1.2章节的关键内容,涵盖了该部分的核心概念、算法和实例,旨在帮助读者深入理解机器学习的基础知识。
摘要由CSDN通过智能技术生成

书2.1.2

from numpy import *
import operator
def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDisttances = sqDiffMat.sum(axis=1)
    distances = sqDisttances**0.5
    sortedDistIndicies = distances.argsort()
    classCount={}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.items(),
                              key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

 

 

 

runfile('C:/Users/zy/.spyder-py3/site_packages/kNN.py', wdir='C:/Users/zy/.spyder-py3/site_packages')

import kNN

group,labels = kNN.createDataSet()

group
Out[4]: 
array([[1. , 1.1],
       [1. , 1. ],
       [0. , 0. ],
       [0. , 0.1]])

labels
Out[5]: ['A', 'A', 'B', 'B']

kNN.classify0([0,0], group, labels, 3)
Traceback (most recent call last):

  File "<ipython-input-6-dd10108cf6df>", line 1, in <module>
    kNN.classify0([0,0], group, labels, 3)

  File "C:\Users\zy\.spyder-py3\site_packages\kNN.py", line 26, in classify0
    sortedClassCount = sorted(classCount.iteritems(),

AttributeError: 'dict' object has no attribute 'iteritems'




runfile('C:/Users/zy/.spyder-py3/site_packages/kNN.py', wdir='C:/Users/zy/.spyder-py3/site_packages')
Reloaded modules: kNN

kNN.classify0([0,0], group, labels, 3)
Out[8]: 'B'

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值