算法训练 最短路
时间限制:1.0s 内存限制:256.0MB
问题描述
给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。
输入格式
第一行两个整数n, m。
接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。
输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定
对于10%的数据,n = 2,m = 2。
对于30%的数据,n <= 5,m <= 10。
对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define MAXN 20005
using namespace std;
int dis[MAXN];
int vis[MAXN];
int head[MAXN];
int n, m, cnt;
struct edge{
int v, w, next;
}edge[200005];
void addedge(int u, int v, int w){
edge[cnt].v = v;
edge[cnt].w = w;
edge[cnt].next = head[u];
head[u] = cnt++;
}
void spfa(int s){
int pos, v;
queue<int> q;
q.push(s);
dis[s] = 0;
vis[s] = 1;
while(!q.empty()){
pos = q.front();
q.pop();
vis[pos] = 0;
for(int i = head[pos]; i!=-1; i = edge[i].next){
v = edge[i].v;
if(dis[pos] + edge[i].w < dis[v]){
dis[v] = dis[pos] + edge[i].w;
if(!vis[v]){
vis[v] = 1;
q.push(v);
}
}
}
}
}
int main()
{
while(scanf("%d %d", &n, &m)!=EOF){
cnt = 0;
memset(head, -1, sizeof(head));
memset(dis, 0x7f, sizeof(dis));
memset(vis, 0, sizeof(vis));
while(m--){
int u, v, l;
scanf("%d %d %d", &u, &v, &l);
addedge(u, v, l);
}
spfa(1);
for(int i = 2; i <= n; i++)
printf("%d\n", dis[i]);
}
return 0;
}
相关文章推荐:SPFA算法——最短路径算法