蓝桥杯- 最短路(SPFA算法)

算法训练 最短路

时间限制:1.0s    内存限制:256.0MB

问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式

共n-1行,第i行表示1号点到i+1号点的最短路。

样例输入

3 3
1 2 -1
2 3 -1
3 1 2

样例输出

-1
-2

数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define MAXN 20005
using namespace std;

int dis[MAXN];
int vis[MAXN];
int head[MAXN];
int n, m, cnt;

struct edge{
    int v, w, next;
}edge[200005];

void addedge(int u, int v, int w){
    edge[cnt].v = v;
    edge[cnt].w = w;
    edge[cnt].next = head[u];
    head[u] = cnt++;
}

void spfa(int s){
    int pos, v;
    queue<int> q;
    q.push(s);
    dis[s] = 0;
    vis[s] = 1;

    while(!q.empty()){
        pos = q.front();
        q.pop();
        vis[pos] = 0;

        for(int i = head[pos]; i!=-1; i = edge[i].next){
            v = edge[i].v;
            if(dis[pos] + edge[i].w < dis[v]){
                dis[v] = dis[pos] + edge[i].w;
                if(!vis[v]){
                    vis[v] = 1;
                    q.push(v);
                }
            }
        }
    }
}

int main()
{
    while(scanf("%d %d", &n, &m)!=EOF){
        cnt = 0;

        memset(head, -1, sizeof(head));
        memset(dis, 0x7f, sizeof(dis));
        memset(vis, 0, sizeof(vis));

        while(m--){
            int u, v, l;
            scanf("%d %d %d", &u, &v, &l);
            addedge(u, v, l);
        }

        spfa(1);

        for(int i = 2; i <= n; i++)
            printf("%d\n", dis[i]);
    }
    return 0;
}


相关文章推荐:SPFA算法——最短路径算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值